
Journal of Memory and Language xxx (2009) xxx–xxx

ARTICLE IN PRESS
Contents lists available at ScienceDirect

Journal of Memory and Language

journal homepage: www.elsevier .com/locate / jml
Visual word recognition of multisyllabic words

Melvin J. Yap a,*, David A. Balota b

a Department of Psychology, Faculty of Arts and Social Sciences, National University of Singapore, Block AS4, #02-07, Singapore 117570, Republic of Singapore
b Department of Psychology, Washington University in St. Louis, MO 63130, United States

a r t i c l e i n f o a b s t r a c t
Article history:
Received 11 February 2008
revision received 31 January 2009
Available online xxxx

Keywords:
Visual word recognition
Multisyllabic words
Megastudies
Lexical decision
Speeded pronunciation
Computational models
0749-596X/$ - see front matter � 2009 Elsevier Inc
doi:10.1016/j.jml.2009.02.001

* Corresponding author. Fax: +65 6 773 1843.
E-mail address: melvin@nus.edu.sg (M.J. Yap).

Please cite this article in press as: Yap, M
ory and Language (2009), doi:10.1016/j.jm
The visual word recognition literature has been dominated by the study of monosyllabic
words in factorial experiments, computational models, and megastudies. However, it is
not yet clear whether the behavioral effects reported for monosyllabic words generalize
reliably to multisyllabic words. Hierarchical regression techniques were used to examine
the effects of standard variables (phonological onsets, stress pattern, length, orthographic
N, phonological N, word frequency) and additional variables (number of syllables, feedfor-
ward and feedback phonological consistency, novel orthographic and phonological similar-
ity measures, semantics) on the pronunciation and lexical decision latencies of 6115
monomorphemic multisyllabic words. These predictors accounted for 61.2% and 61.6% of
the variance in pronunciation and lexical decision latencies, respectively, higher than the
estimates reported by previous monosyllabic studies. The findings we report represent a
well-specified set of benchmark phenomena for constraining nascent multisyllabic models
of English word recognition.

� 2009 Elsevier Inc. All rights reserved.
Introduction cal processing arises as a result of competitive and
Understanding the processes underlying the visual rec-
ognition of isolated words remains a central endeavor in
psycholinguistics, cognitive psychology, and cognitive neu-
roscience. Over the past three decades, a prodigious
amount of work in visual word recognition has not only
identified the many statistical properties associated with
words (e.g., length, frequency of occurrence, concreteness,
etc.) but also the effect of these properties on word recog-
nition performance (see Balota, Yap, & Cortese, 2006, for a
review). Importantly, the effects uncovered by this kind of
empirical work have also been used to constrain computa-
tional models of word recognition.

Extant models themselves have been developed from
two different standpoints. The traditional perspective
holds that word recognition involves rules operating on
explicit local representations (e.g., the dual route cas-
caded model; Coltheart, Rastle, Perry, Langdon, & Ziegler,
2001), while the connectionist approach holds that lexi-
. All rights reserved.

. J., & Balota, D. A. Visua
l.2009.02.001
cooperative interactions among distributed representa-
tions (e.g., the triangle model; Plaut, McClelland,
Seidenberg, & Patterson, 1996). Both classes of models
were developed to account for performance on two tasks,
speeded pronunciation (participants read aloud visually
printed words) and lexical decision (participants
discriminate between real words and made-up words,
e.g., flirp, via button presses). As reflected in the modeling
efforts, accounting for the behavioral effects observed
with these two tasks has become the de facto gold stan-
dard in visual word recognition research. However, nei-
ther task is process-pure; each reflects task-general
word identification processes and task-specific processes.
This makes it particularly important for word recognition
researchers to consider the effects of variables across
both tasks.

From monosyllables to multisyllables

The available literature in visual word recognition re-
search has been dominated by the study of monosyllabic
words in computational models, factorial experiments,
l word recognition of multisyllabic words. Journal of Mem-
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and megastudies. The emphasis on monosyllabic words is
unsurprising. They are relatively simple stimuli to work
with because experimenters do not have to worry about
additional processes such as syllabic segmentation, stress
assignment, and vowel reduction. For example, English
disyllabic words can either be stressed on the first syllable
(trochaic stress, e.g., cancel) or the second syllable (iambic
stress, e.g., comply). There are also differences in vowel
reduction, a process whereby certain vowels undergo qual-
itative changes when they occur in an unstressed position
(e.g., become replaced by a schwa, bypass vs. compass). Fur-
thermore, from a practical standpoint, many of the mea-
sures available for monosyllabic words, such as
phonological consistency (Balota, Cortese, Sergent-Mar-
shall, Spieler, & Yap, 2004), familiarity (Balota, Pilotti, &
Cortese, 2001), and imageability (Cortese & Fugett, 2004),
simply have not been developed for a comprehensive set
of multisyllabic words.

Although the past emphasis on monosyllabic words is
understandable, it is possible that the results from mono-
syllabic studies may not necessarily generalize to more
complex multisyllabic words. This is important since
monosyllabic words only comprise a minority of the words
in a person’s lexicon. For example, in the English Lexicon
Project (ELP; Balota et al., 2007), an on-line repository of
lexical and behavioral measures for 40,481 words (http://
elexicon.wustl.edu), only about 15% of the 40,000 words
represented are monosyllabic. We shall now turn to a
selective overview of the multisyllabic word recognition
literature.

Multisyllabic word recognition

Phonological consistency
Jared and Seidenberg (1990) examined pronunciation

latencies for di- and trisyllabic words that varied with re-
spect to their phonological consistency. At that time, the
major theoretical view (e.g., Patterson & Morton, 1985)
was that spelling-sound mappings were best represented
via a set of abstract grapheme-phoneme correspondence
rules (e.g., k ? /k/). Under this perspective, words whose
pronunciations are rule-governed are regular while words
that deviate from the rules are exceptional. The adequacy
of this dichotomy was first challenged by Glushko’s
(1979) influential study, where he argued that regularity
had to be supplemented by consistency. Consistency re-
flects the mapping between spelling and sound, and a
word is considered consistent if its pronunciation matches
that of most similarly spelled words. For example, spook is
inconsistent because the pronunciation of its rime (vowel
and following consonants, i.e., ook) conflicts with that of
similarly spelled words (e.g., book, look, hook). Glushko
examined exceptional words (e.g., have), regular consistent
words (e.g., wade), and regular inconsistent words (e.g.,
wave), and reported that pronunciation latencies were
longer for both exception and regular inconsistent words,
compared to regular consistent words. Jared and Seiden-
berg (Experiment 1) developed multisyllabic analogs of
Glushko’s stimuli to explore consistency effects in multi-
syllabic word recognition. Specifically, ravine is exceptional
because the second syllable is pronounced differently in
Please cite this article in press as: Yap, M. J., & Balota, D. A. Visua
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isolation. Convene is regular consistent because the second
syllable is pronounced the same way in all words with the
same stress pattern. In contrast, divine is regular inconsis-
tent because although the second syllable is pronounced
the same way in isolation, the second syllable can be pro-
nounced two different ways (i.e., ravine vs. divine). Com-
pared to regular words, exceptional and regular
inconsistent words yielded longer pronunciation latencies,
mirroring Glushko’s results with monosyllabic words.
Moreover, this effect was observed only for low-frequency
words (Jared and Seidenberg (1990), Experiment 2).

Jared and Seidenberg (1990, Experiment 3) also re-
ported that although words with more syllables took long-
er to pronounce, this effect was limited to low-frequency
words. Since this finding is consistent with low-frequency
words being decomposed into syllables during word recog-
nition, a final experiment was conducted which involved
syllable-by-syllable presentation of words. In this condi-
tion, participants pronounced exception words more
slowly and less accurately, compared to when words were
presented as wholes. In contrast, the pronunciation of reg-
ular words was not affected by the syllabified stimulus
presentation. Based on this final finding, Jared and Seiden-
berg argued that it is unlikely that pronunciations are gen-
erated on a syllable-by-syllable basis. If syllabification is
indeed occurring, then a stimulus display that makes syl-
labic units more salient should not impair performance. In-
stead, it is likely that readers are using information beyond
the first syllable to constrain the pronunciation of an
exception word. When this information is unavailable, pro-
nunciation latencies are slowed down.

Although consistency was initially treated as a dichoto-
mous variable (Glushko, 1979; Jared & Seidenberg, 1990),
subsequent studies (e.g., Treiman, Mullennix, Bijeljac-Ba-
bic, & Richmond-Welty, 1995) have defined consistency
in a continuous manner, after Jared, McRae, and Seiden-
berg (1990) demonstrated that the magnitude of consis-
tency effects is related to the relative number of ‘‘friends”
(i.e., similarly spelled words pronounced the same way)
and ‘‘enemies” (i.e., similarly spelled words pronounced
differently) in a word’s neighborhood. Treiman et al. com-
puted spelling-to-sound consistency measures for various
orthographic segments (e.g., C1, V, C2, C1V, VC2 in monosyl-
labic words), basing them on the number or frequency of
friends relative to the total number or frequency of friends
and enemies. Using regression analyses, these measures
were used to predict speeded pronunciation performance
in two large databases of monosyllabic CVC words. The
major finding was that the consistency of the VC2 segment
(i.e., the orthographic rime) accounted for variance in pro-
nunciation latencies and errors even after lexical variables
and the consistency of individual graphemes were con-
trolled for.

Chateau and Jared (2003) extended Treiman et al.’s
methodology to disyllabic words by examining consistency
effects in a large set of 1000 monomorphemic six-letter
disyllabic words, after computing the consistency of vari-
ous intrasyllabic orthographic segments (i.e., C1, C1V1, V1,
V1C2, C2, C3, C3V2, V2, V2C4; see Chateau & Jared, 2003,
Fig. 1) for each word. In addition, Chateau and Jared calcu-
lated the consistency for a unit that transcends syllabic
l word recognition of multisyllabic words. Journal of Mem-
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Fig. 1. The division of the word VERTEX into different orthographic
segments. From Chateau and Jared (2003) p.261. Copyright 2003 by
Elsevier. Reproduced with permission.
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boundaries, the body of the Basic Orthographic Syllabic
Structure (BOSS) (Taft, 1979; Taft, 1992). According to Taft
(1979), for multisyllabic words, the BOSS serves as an
orthographic access unit to the lexicon. The body of the
BOSS, also called the BOB, includes the vowel grapheme
of the first syllable and as many consonants that follow
the first vowel to form an orthographically legal word end-
ing. For example, for the word mea-dow, ead is the BOB;
this unit straddles the first and second syllables. Taft
(1992) has argued that the BOB is to multisyllabic words
what the rime is to monosyllabic words, that is, it plays
an important role in lexical access.

The analyses conducted by Chateau and Jared (2003)
were somewhat complicated by the fact that not all the
six-letter disyllabic words selected share the same conso-
nant–vowel structure. That is, only a subset (477) of the
1000 words (e.g., vertex) possesses consistency measures
for all orthographic segments. Other words have structures
which lack one or more of these segments. For example, be-
long lacks the C2 segment while brandy lacks the C4 seg-
ment. This made it necessary for Chateau and Jared to run
a simultaneous regression with the 477 target words and
eight separate hierarchical regression analyses in which
different subsets of consistency predictors were entered
for words belonging to different structures (since a word
is eliminated from a regression analysis if there is a missing
value for a predictor). Although this approach is cumber-
some, it does have the advantage of assessing the predictive
power of a particular orthographic unit in different ortho-
graphic structures. Across the various analyses, the spell-
ing-sound consistency of two segments predicted
pronunciation performance especially well, V2 (i.e., second
syllable vowel) and BOB consistency. In contrast, the con-
sistency of the consonantal segments did not account for
much variance. Interestingly, Chateau and Jared noted that
the consistency of the rime segments (i.e., V1C2 and the
V2C4) were relatively weak predictors of pronunciation per-
formance, which seems surprising given previous work
showing prominent effects of rime consistency in monosyl-
labic words (cf. Glushko, 1979, and Treiman et al., 1995).
Specifically, V1C2 consistency effects were significant in
the simultaneous regression analysis (n = 477) and three
of the eight hierarchical regression analyses, but only in
latencies, not in error rates. V2C4 consistency effects were
similarly limited. A follow-up experiment (Experiment 3)
which factorially manipulated consistency and segment
(BOB vs. V1C2) also yielded significant effects of BOB, but
not V1C2, consistency. According to Chateau and Jared,
Please cite this article in press as: Yap, M. J., & Balota, D. A. Visua
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BOB effects may be more robust than V1C2 effects because
the extra letter in the BOB allows it to better constrain
the pronunciation of the vowel in the first syllable. How-
ever, it is not the case that pronunciation performance is
influenced by either V1C2 or BOB consistency. It is more
likely that the consistency of multiple grain sizes is simulta-
neously influencing speeded pronunciation performance.

Role of the syllable
Based on the findings summarized above, Chateau and

Jared (2003) have argued it is unlikely that multisyllabic
words are parsed into syllables, with pronunciations as-
signed syllable-by-syllable. If so, then one would expect
stronger rime consistency effects, since the rime maps onto
the syllabic body. One would also not expect BOB effects,
since the BOB crosses syllabic boundaries. In addition,
Jared and Seidenberg (1990) showed that number of sylla-
bles only influenced the speeded pronunciation of low-fre-
quency words (Experiment 3) and dividing words into
syllables did not shorten pronunciation latencies but in-
stead slowed down the processing of exception words
(Experiment 4). These data are difficult to reconcile with
the notion that all words are segmented into syllables.
However, although Chateau and Jared rule out the idea that
letter strings are explicitly parsed into syllables, their
study provides some provocative evidence that syllables
can, along with other units, influence speeded pronuncia-
tion performance. Interestingly, as we shall now discuss,
the role of syllables in visual word recognition is a surpris-
ingly contentious issue.

There has clearly been some strong support for a critical
role of the syllable in language processing. For example, the
syllable has played a central role in linguistic theories (Blev-
ins, 1995; Hooper, 1972; Selkirk, 1982). In addition, there is
considerable evidence for the reality of syllables in the men-
tal representations of words (see Cutler, Mehler, Norris, &
Segui, 1986, for a review). Indeed, Spoehr (1981) has
claimed a central role for the syllable in the perception of
both speech and print. Furthermore, Content, Kearns, and
Frauenfelder (2001) highlighted the role of the syllable in
leading models of speech production, based on evidence
that it is more accessible to metalinguistic manipulations
than other phonological units, and that it appears to be a po-
tential processing unit in visual word recognition. For exam-
ple, using an illusory conjunction paradigm, Prinzmetal,
Treiman, and Rho (1986) reported that participants were
more likely to produce illusory conjunctions between letters
in the same syllable of a word than between letters within
different syllables, suggesting that syllables are units of
analyses in word perception. In a modified lexical decision
task, Ashby and Martin (2008) observed that lexical decision
latencies were faster when a target word (e.g., gender) was
primed by a parafoveal preview matching the word’s initial
syllable (e.g., gen) than a preview that contained one letter
more or less than the initial syllable (e.g., ge).

On the other hand, there are also studies that cast doubt
on the view that syllables play an important role. For
example, Ferrand, Segui, and Humphreys (1997), using
brief masked primes, observed syllable priming effects
for English words with clear syllabic boundaries, i.e., faster
pronunciation for bal-cony when primed by bal than when
l word recognition of multisyllabic words. Journal of Mem-
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primed by ba. However, it should be noted that priming ef-
fects were absent for ambisyllabic words (e.g., balance) and
in lexical decision performance, suggesting that the role of
syllables is restricted to syllabifiable words, and that prim-
ing may reflect output more than access processes. Other
linguists have assigned a marginal role to syllables (Chom-
sky & Halle, 1968) and psychologists have argued that
there is little evidence for their functional status, at least
in English (see Cutler et al., 1986; Jared & Seidenberg,
1990). Seidenberg (1987), who replicated and extended
the Prinzmetal et al. (1986) study, argued that the appar-
ent perceptual salience of syllables in that study was due
to orthographic redundancy rather than to syllabification
per se (note however, that Rapp, 1992, extended Seiden-
berg’s study and found clear effects of syllabic structure
that could not be explained away by orthographic redun-
dancy). The robustness of the syllable priming effect itself
has also been criticized. For example, Schiller (2000), using
the same materials and methodology as Ferrand et al.
(1997), was unable to replicate the syllable priming effect
in English (Brand, Rey, & Peereman, 2003, were also unable
to replicate the effect in French).

The work by Chateau and colleagues helps inform this
debate. In Chateau and Jared (2003), although V2 and
BOB consistency effects were more robust than V1C2 and
V2C4 consistency effects, the rime effects were nonetheless
reliable, most notably in the simultaneous regression anal-
yses. These results indicate that syllabically-defined (i.e.,
rime) consistency accounts for unique variance in pronun-
ciation performance, especially when one considers perfor-
mance on a large set of English words. As we have
discussed earlier, participants may be sensitive to both syl-
lables and units larger than the syllable (cf. Chateau and
Jared). Another finding that bears on the role of the syllable
is the number of syllables effect. The underlying assump-
tion here, of course, is that this effect is a marker for pro-
cesses that recover syllabic structure (Jared & Seidenberg,
1990). As described earlier, Jared and Seidenberg observed
that for low-frequency words, words with more syllables
took longer to pronounce, after controlling for factors such
as length, initial phoneme, syllabic structure, and stress.
Likewise, New, Ferrand, Pallier, and Brysbaert (2006),
who carried out regression analyses of 33,006 words from
the ELP (Balota et al., 2007), reported a positive correlation
between number of syllables and lexical decision latencies,
after controlling for a number of variables (see Butler &
Hains, 1979, who also reported this pattern). Jared and
Seidenberg have argued that inferring syllabic decomposi-
tion from syllabic structure effects is equivocal because
number of syllables, by definition, is confounded with
number of vowels, and number of syllables effects may
simply reflect additional time devoted to processing vow-
els, which are the greatest source of inconsistency in most
words. Given that words with more syllables tend to be
associated with greater feedforward inconsistency, it is
critical to control for phonological consistency, which
was not done in the New et al. study, in large part because
there have not been useful estimates of phonological con-
sistency for multisyllabic words. As described below, we
will provide such a measure of consistency in the present
research.
Please cite this article in press as: Yap, M. J., & Balota, D. A. Visua
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To recapitulate, we think that syllables do play a role in
visual word recognition, in the sense that multiple codes
(i.e., phoneme, syllable, BOB) emerge due to the statistical
properties of the orthographic-phonological-semantic
mappings which mediate lexical access and output pro-
cesses. The salience and utility of a code may be stimuli-
and task-dependent. Although BOB and V2 consistency
were especially powerful predictors across the various
regression analyses in Chateau and Jared (2003), the consis-
tency of virtually all segments (with the exception of C3) ac-
counted for a significant proportion of variance in at least
one analysis. If readers are indeed sensitive to different
grain sizes during word recognition (cf. Ziegler & Goswami,
2005), and this sensitivity is modulated by stimulus proper-
ties, it is unsurprising that consistency effects can operate
at so many different levels of granularity. This position is
motivated by Chateau and Jared’s (2003) general conclu-
sion that consistency effects for an orthographic segment
emerge to the extent that that unit constrains pronuncia-
tion for ambiguous segments. For example, V1C2 effects
were stronger in the simultaneous multiple regression
(which featured 477 words possessing consistency mea-
sures for all orthographic segments), because for such
words (e.g., vertex), V1C2 may constrain the pronunciation
of the ambiguous vowel V1 as well or better than the BOB.

Overview of the present study

The present study examines the influence of major psy-
cholinguistic variables on the word recognition perfor-
mance of 6115 English monomorphemic multisyllabic
words, via hierarchical regression analyses of a large-scale
database of behavioral data. Specifically, the targeted
behavioral database is the ELP (Balota et al., 2007), which
contains lexical and behavioral measures for 40,481 words.
The data in the ELP were collected from over 1200 partic-
ipants across six universities. Examining the effects of vari-
ables via multiple regression mitigates many of the
limitations associated with factorial experiments, which
have played a major role in the field of visual word recog-
nition. Most obviously, factorial designs require variables
of interest to be orthogonally manipulated. This is particu-
larly difficult with word stimuli because many lexical
properties influence word recognition performance, and
these properties are often correlated with each other. For
example, shorter words tend to occur more frequently in
the language, and this multicollinearity makes the task of
selecting items that vary only on the variable of interest,
while matching for other variables, particularly vexing
(Cutler, 1981). The failure to control for extraneous vari-
ables has led to a number of controversies in the field.
For example, Gernsbacher (1984) demonstrated that the
inconsistent interactions between word frequency and a
number of variables (bigram frequency, concreteness,
polysemy) were due to confounding experiential familiar-
ity with the second variable of interest. More recently,
Monaghan and Ellis (2002) have argued that the three-
way interaction effect between consistency, frequency,
and imageability reported by Strain, Patterson, and Seiden-
berg (1995) was driven by the failure to control for age of
acquisition. Factorial experiments also require continuous
l word recognition of multisyllabic words. Journal of Mem-



Table 1
Means and standard deviations for full set of predictors and dependent
variables explored in the item-level regression analyses.

Mean SD

Pronunciation RT (Z-score) �0.032 0.460
Pronunciation accuracy 0.905 0.140
LDT RT (Z-score) �0.035 0.425
LDT accuracy 0.774 0.240
Number of syllables 2.373 0.618
Length 6.746 1.566
Word Frequency (rank) 20730 9870
Orthographic N 0.779 1.493
Phonological N 2.334 2.444
Levenshtein orthographic distance 2.640 0.816
Levenshtein phonological distance 4.505 1.764
LOD Neighborhood Frequency 7.008 0.664
S1 feedforward onset consistency 0.934 0.175
S1 feedforward rime consistency 0.470 0.280
S1 feedback onset consistency 0.914 0.191
S1 feedback rime consistency 0.615 0.310
Distance consistency 0.611 0.131
Composite FFO consistency 0.836 0.158
Composite FFR consistency 0.539 0.201
Composite FBO consistency 0.745 0.177
Composite FBR consistency 0.534 0.201
WordNet number of senses 0.509 0.223
Local semantic neighborhood size 2.627 0.553

1 We chose to control for the phonetic properties of only the first
phoneme to maintain parity with earlier large-scale studies by Treiman
et al. (1995), Chateau and Jared (2002), and Balota et al. (2004), although it
should be noted that the second phoneme may also have an effect on
response times (Kessler, Treiman, & Mullennix, 2002).
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psycholinguistic variables (e.g., frequency, length, consis-
tency) to be converted into categories. There is also evi-
dence that such categorization could yield misleading
results, either by decreasing statistical power and reliabil-
ity (Cohen, 1983) or by inflating the Type II error rate
(MacCallum, Zhang, Preacher, & Rucker, 2002). Finally, fac-
torial experiments are more vulnerable to context effects,
whereby the characteristics of the words within a list can
modulate the effect being studied. For example, Andrews
(1997) has argued that some of the inconsistencies in the
orthographic N literature are a consequence of variations
in the stimulus list environment, and Seidenberg, Waters,
Barnes, and Tanenhaus (1984) also found that the effects
of regularity depend upon other words in the list that share
the same rimes as the experimental stimuli.

The present study extends the large-scale studies by Ba-
lota et al. (2004) and Chateau and Jared (2003). Balota et al.
examined the effects of surface, lexical, and semantic vari-
ables on the pronunciation and lexical decision performance
of 2428 monosyllabic words, while Chateau and Jared exam-
ined the effects of phonological consistency for various
orthographic segments on the pronunciation performance
of 1000 six-letter disyllabic words. Here, we explore the ef-
fects of a set of variables on visual word recognition for 6115
monomorphemic multisyllabic words in the ELP (see Balota
et al., 2007 for a fuller description of this database), breaking
new ground on multiple fronts. First, we will investigate lex-
ical processes in both lexical decision and in speeded pro-
nunciation for multisyllabic words; Chateau and Jared only
focused on speeded pronunciation. The convergence and
divergence across tasks is useful in providing information
about the nature of the variables of interest. Second, in the
present study, word recognition performance for a greater
number and variety of words is considered; Chateau and
Jared focused exclusively on six-letter disyllabic words.
Third, and most importantly, we explore the effects of novel
variables that are optimized for multisyllabic words. For
example, Chateau and Jared’s analyses provided valuable in-
sights into how the consistency of specific orthographic seg-
ments differentially influenced multisyllabic word
recognition, but their approach required them to run sepa-
rate analyses for each orthographic structure. In contrast,
the consistency measures we will be using are global and
encompass the entire word, effectively allowing us to
accommodate all 6115 words within a single regression
analysis, with their variable lengths, structures, and number
of syllables. However, our approach has limited resolution
for identifying the impact of specific orthographic units. Ulti-
mately, we see both approaches as complementary rather
than mutually exclusive, each yielding different but con-
verging pieces of information.

Together with consistency, we also study the effects of
traditional (e.g., length, frequency, orthographic and pho-
nological neighborhood size) and newer variables that
capture orthographic similarity and semantics for multi-
syllabic words. The full set of variables used will be de-
scribed more fully in the next section. In addition to
examining the linear effects of variables, non-linear (cf.
Baayen, Feldman, & Schreuder, 2006) and interactive ef-
fects in multisyllabic word recognition will also be ex-
plored. A better specification of the basic experimental
Please cite this article in press as: Yap, M. J., & Balota, D. A. Visua
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phenomena associated with multisyllabic words will be
critical in defining the constraints that have to be satisfied
by nascent and future models of multisyllabic word recog-
nition. We will now turn to a description of our predictor
variables.

Predictor variables for the regression analyses

The variables in the analyses were divided into three
clusters: surface variables, lexical variables, and semantic
variables (see Table 1 for descriptive statistics of predictors
and measures). Table 2 presents all the intercorrelations
between the predictors and dependent variables being
examined.

Surface level
The surface level variables are designed to capture the

variance associated with voice key biases and stress pat-
terns. Dichotomous variables were used to code the initial
phoneme1 of each word (1 = presence of feature; 0 = ab-
sence of feature) on 13 features: affricative, alveolar, bila-
bial, dental, fricative, glottal, labiodentals, liquid, nasal,
palatal, stop, velar, and voiced (Spieler & Balota, 1997; Trei-
man et al., 1995). Phonetic bias effects can be attributable
either to articulatory (some phonemes take more time to
initiate) or acoustic (some phonemes take more time for
the voice key to detect) reasons (Kessler et al., 2002). Impor-
tantly, as one would expect if these variables are specific to
voice key operation, the constellation of 13 variables has
been shown to powerfully predict pronunciation (35% of
l word recognition of multisyllabic words. Journal of Mem-



Table 2
Correlations between full set of predictors and dependent variables explored in the item-level regression analyses.

1 2 3 4 5 6 7 8 9 10 11 12

1. Pronunciation-Z-RT – �.68*** .76*** �.67*** .44*** .47*** �.59*** �.29*** �.28*** .55*** .55*** �.29***

2. Pronunciation-Acc – �.59*** .75*** �.21*** �.17*** .52*** .13*** .12*** �.24*** �.29*** .08***

3. LDT-Z-RT � �.72*** .37*** .39*** �.70*** �.22*** �.20*** .47*** .45*** �.26***

4. LDT-Acc – �.13*** �.11*** .70*** .10*** .08*** �.21*** �.21*** .08***

5. Number of syllables – .66*** �.17*** �.28*** �.31*** .69*** .75*** �.40***

6. Length – �.24*** �.38*** �.37*** .84*** .68*** �.70***

7. Rank composite freq – .12*** .11*** �.26*** �.20*** .28***

8. Orthographic N – .64*** �.50*** �.45*** .19***

9. Phonological N – �.45*** �.50*** .16***

10. L orthographic distance – .83*** �.53***

11. L phonological distance – �.35***

12. Neighborhood freq –
13. S1 FF onset consistency
14. S1 FF rime consistency
15. S1 FB onset consistency
16. S1 FB rime consistency
17. Distance consistency
18. Compo FFO consistency
19. Compo FFR consistency
20. Compo FBO consistency
21. Compo FBR consistency
22. WdNet no. senses
23. Semantic neigh. size

13 14 15 16 17 18 19 20 21 22 23

1. Pronunciation-Z-RT �.15*** .00 �.16*** �.08*** �.22*** �.15*** �.12*** .01 �.13*** �.38*** �.53***

2. Pronunciation-Acc .05*** .04** .04*** .05*** .18*** .07*** .11*** �.02 .11*** .28*** .41***

3. LDT-Z-RT �.04*** .05*** �.04*** �.03* �.14*** �.05*** �.06*** .04** �.05*** �.44*** �.63***

4. LDT�Acc .04*** �.01 .03** .03* .08*** .02 .03* .01 .05*** .36*** .58***

5. Number of syllables �.01 �.02 .01 .07*** �.33*** �.07*** �.26*** .07*** .00 �.19*** �.19***

6. Length �.02� .14*** �.03� .04** �.02 �.12*** �.01 �.01 .01 �.13*** �.19***

7. Rank composite freq .02 �.07*** .01 �.02 �.02� �.01 �.02 .05*** �.04** .45*** .81***

8. Orthographic N .03* �.05*** .05*** .07*** .15*** .10*** .06*** �.08*** .11*** .18*** .13***

9. Phonological N .03* �.03* .01 .05*** .39*** .12*** .13*** �.22*** .01 .18*** .13***

10. L orthographic distance �.03* .11*** �.06*** �.02� �.10*** �.10*** �.06*** .01 �.08*** �.27*** �.28***

11. L phonological distance �.06*** .00 �.06*** �.02 �.59*** �.15*** �.22*** .13*** �.08*** �.29*** �.24***

12. Neighborhood freq .02 �.17*** .00 �.08*** �.20*** �.00 �.09*** .13*** �.06*** .09*** .23***

13. S1 FF onset consistency – .00 .53*** .05*** .08*** .46*** �.01 .21*** .07*** .03� .02
14. S1 FF rime consistency – .01 .33*** .18*** �.05*** .67*** .01 .17*** �.05*** �.08***

15. S1 FB onset consistency – .06*** .02� .23*** .01 .46*** .06*** .05*** .04**

16. S1 FB rime consistency – .05*** .05*** .21*** �.05** .65*** .01 �.01
17. Distance consistency – .16*** .31*** �.29*** .07*** .15*** .02
18. Compo FFO consistency – �.01 .22*** .11*** .02 �.04**

19. Compo FFR consistency – .03* .21*** .03* �.02
20. Compo FBO consistency – �.05*** �.03* .05**

21. Compo FBR consistency – .05*** �.03*

22. WdNet no. senses – .45***

23. Semantic neigh. size –

* p < .05.
** p < .01.
*** p < .001.
� p < .10.
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the variance), but not lexical decision (1% of variance), per-
formance (Balota et al., 2004). Four dummy variables were
also included to capture the stress pattern of a word, i.e.,
the syllable on which stress falls (Chateau & Jared, 2003);
words with stress on the first syllable comprised the refer-
ence group.
Lexical level
The lexical variables refer to characteristics that are high-

er order than phonetic features but lower-level than seman-
tic features. Note that number of phonemes was not
included as a predictor due to its very high correlation with
length, r = .836.
Please cite this article in press as: Yap, M. J., & Balota, D. A. Visua
ory and Language (2009), doi:10.1016/j.jml.2009.02.001
Length (linear). Number of letters.

Length (quadratic). (Number of letters)2. New et al. (2006)
reported a quadratic U-shaped relationship between
length and lexical decision latencies. For short words,
length and latencies were negatively correlated, for med-
ium-length words, there was no relationship, and for long
words, length and latencies were positively correlated.
Quadratic effects of length were examined in both speeded
pronunciation and lexical decision performance, after con-
trolling for variables not controlled for by New et al.

Number of syllables. This refers to the number of syllables.
In the 6115 multisyllabic words examined, there were
l word recognition of multisyllabic words. Journal of Mem-
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4244 disyllabic words (69.4%), 1495 trisyllabic words
(24.4%), 344 quadrasyllabic words (5.6%), 28 pentasyllabic
words (.5%), and four hexasyllabic words (.1%).

Orthographic neighborhood size (orthographic N). The num-
ber of words that can be obtained by changing a single let-
ter in the target word, while holding the other letters
constant (Coltheart, Davelaar, Jonasson, & Besner, 1977).
For example, the orthographic neighbors of cat include
bat, cot, and cap.

Phonological neighborhood size (phonological N). The num-
ber of words that can be obtained by changing a single
phoneme in the target word, while holding the other pho-
nemes constant (Mulatti, Reynolds, & Besner, 2006; Yates,
2005). For example, the phonological neighbors of gate in-
clude hate, get, and bait.

Word frequency. The word frequency measure used in this
study is the composite rank frequency measure developed
by Yap (2007). Yap compared the predictive power of
rank vs. log-transformed measures (c.f., Murray & Forster,
2004) for a number of popular word frequency counts,
using a large sample of over 26,000 words from the ELP
(Balota et al., 2007). The three best frequency measures
identified (based on proportion of word recognition vari-
ance accounted for) were the HAL norms (Lund & Burgess,
1996), Zeno norms (Zeno, Ivens, Millard, & Duvvuri,
1995), and Google norms (Brants & Franz, 2006). More-
over, rank-transformed counts accounted for more vari-
ance than logarithm-transformed (i.e.,
log10 (frequency + 1)) counts, consistent with Murray and
Forster’s (2004) argument that recognition times are line-
arly related to the rank position of a word on a frequency-
ordered list. Rank transformation involves sorting all the
words in a corpus (in this case, all the words in the
ELP) by frequency, and assigning lower ranks to words
with higher raw frequency counts. Interestingly, the mean
of the rank HAL, rank Zeno, and rank Google frequency
measures predicted word recognition performance better
than any of the individual constituent measures, and it
is this composite rank frequency measure that will be
employed in the present study.

Levenshtein measures. The Levenshtein measures (Yarkoni,
Balota, & Yap, 2008) include Levenshtein orthographic dis-
tance (LOD), Levenshtein phonological distance (LPD), and
Levenshtein neighborhood frequency (LODNF). These met-
rics are all based on Levenshtein distance, a measure of
string similarity used in information theory and computer
science, which is defined as the number of insertions, dele-
tions, and substitutions needed to convert one string of
elements (e.g., letters or phonemes) to another. In order
to create usable metrics of orthographic and phonological
similarity, orthographic and phonological Levenshtein dis-
tances were first calculated between every word and every
other word in the ELP. LOD and LPD represent the mean
orthographic and phonological Levenshtein distances,
respectively, from a word to its 20 closest neighbors. LOD-
NF reflects the mean frequency of the 20 closest neighbors.
Briefly, the Levenshtein measures circumvent many of the
Please cite this article in press as: Yap, M. J., & Balota, D. A. Visua
ory and Language (2009), doi:10.1016/j.jml.2009.02.001
limitations associated with traditional neighborhood mea-
sures (e.g., orthographic N), and in fact are more powerful
predictors of performance than traditional variables (see
Yarkoni et al.). For example, the utility of orthographic/
phonological N is limited for long words since most long
words (e.g., encyclopedia) have few or no orthographic/
phonological neighbors, whereas LOD and LPD are useful
for words of all lengths (see Fig. 2).

Syllable 1 consistency measures. These consistency mea-
sures reflect the feedforward (spelling-to-sound) and feed-
back (sound-to-spelling) consistency of the onset and rime
segments in the first syllable of each word. Thus far, we
have discussed feedforward consistency, which measures
the degree to which items with similar spellings have sim-
ilar pronunciations. Stone, Vanhoy, and Van Orden (1997)
have proposed that feedback consistency, which measures
the degree to which items with similar pronunciations
have similar spellings, also matters. For example, the rime
in plaid is feedback-inconsistent because /�d/ is usually
spelled as ad (e.g., mad, cad, had), not aid. The feedback
consistency literature is somewhat controversial, and some
studies find feedback consistency effects in lexical decision
(Lacruz & Folk, 2004; Perry, 2003; Stone et al., 1997; Zie-
gler, Montant, & Jacobs, 1997) and speeded pronunciation
(Balota et al., 2004; Lacruz & Folk, 2004; Ziegler et al.,
1997) but others do not (Massaro & Jesse, 2005; Peereman,
Content, & Bonin, 1998; Ziegler, Petrova, & Ferrand, 2008).
It is worth noting that feedback consistency has yet to be
explored in multisyllabic word recognition.

All consistency measures in the present study were
computed using a corpus based on the 9639 monomorphe-
mic words in the ELP (Balota et al., 2007). To decide what
constituted the syllables of a word, the linguistically-de-
fined syllabic boundaries in CELEX (Baayen, Piepenbrock,
& van Rijn, 1993) were consulted. In cases where there
was a mismatch between syllabic and phonological syl-
labic boundaries (e.g., for abacus, the orthographic parsing
is ab-a-cus while the phonological parsing is /a-bE-kEs/),
the word was re-parsed so that the orthographic parsing
was aligned with its phonological counterpart (i.e., a-ba-
cus). Consistency ranges from 0 to 1, with larger values
indicating higher consistency (see Yap, 2007, for more
information).

Composite consistency measures and Levenshtein
phonological consistency. The composite consistency mea-
sures (Yap, 2007) reflect mean consistency across syllabic
positions. For example, the composite feedforward rime
consistency of the disyllabic word worship is the mean
feedforward rime consistency of -or (Syllable 1) and -ip
(Syllable 2). Using composite measures allows the full set
of words to be included in the regression analyses. If the
syllable-specific measures for Syllable 1 and Syllable 2
feedforward rime consistency were included in the regres-
sion model, this would limit observations to words which
have two or more syllables. Levenshtein phonological con-
sistency (LPC) is the ratio of LOD to LPD (see above), and
approaches 1 for consistent words and 0 for inconsistent
words. This measure, which is not syllabically defined,
should capture consistency across the entire letter string.
l word recognition of multisyllabic words. Journal of Mem-
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Fig. 2. Mean orthographic N and Levenshtein orthographic distance as a function of length (top panel). Mean phonological N and Levenshtein phonological
distance as a function of length (bottom panel). Error bars denote standard errors.
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Semantic level
Number of senses. The number of meanings a word pos-
sesses in the WordNet database (Miller, 1990); this vari-
able is log-transformed in the present analyses, since the
underlying distribution is highly skewed.

Local semantic neighborhood size. Local semantic neighbor-
hood (LSN) size reflects the number of semantic neighbors
within a specified radius in high-dimensional semantic
space (Durda, Buchanan, & Caron, 2006; http://www.word-
mine2.org). Specifically, words with more neighbors with-
in some radius possess denser neighborhoods. This
variable is log-transformed in the present analyses.

Item-level regression analyses

Three discrete sets of analyses were conducted.
Although there are 9639 monomorphemic words in the
ELP, our analyses and subsequent discussion will focus
on the 6115 multisyllabic words in the monomorphemic
Please cite this article in press as: Yap, M. J., & Balota, D. A. Visua
ory and Language (2009), doi:10.1016/j.jml.2009.02.001
corpus, since multisyllabic words are the focus of this
study. In the first section, we will describe item-level
regression analyses on the pronunciation and lexical deci-
sion performance for 6115 multisyllabic words, which are
supplemented by separate analyses for monosyllabic
words (n = 3524) and all (i.e., monosyllabic and multisyl-
labic; n = 9639) words. This is followed by regression anal-
yses exploring theoretically important interactions. In the
second section, we present analyses employing measures
that are specific to multisyllabic words. Note that the anal-
yses in the first section feature measures that are available
for both mono- and multisyllabic words.

Item-level analyses for all monomorphemic words
An eight-step hierarchical regression analyses was con-

ducted for both pronunciation and lexical decision perfor-
mance. Phonological onsets were entered in Step 1, stress
pattern in Step 2, number of syllables, length, orthographic
N, phonological N, and rank composite frequency in Step 3,
quadratic length in Step 4, LOD, LPD, and LODNF in Step 5,
l word recognition of multisyllabic words. Journal of Mem-
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first syllable consistency measures in Step 6, LPC and com-
posite consistency measures in Step 7, and semantic mea-
sures (number of senses and LSN size) in Step 8. The
rationale for this hierarchy was to first enter variables cod-
ing onset and prosodic properties, followed by entering
established, well-studied lexical variables such as length,
word frequency, and neighborhood density. Novel lexical
variables (i.e., the Levenshtein-based measures) were then
entered to assess their effects above and beyond tradi-
tional measures. After lexical variables were controlled
for, we then turned to phonological consistency measures
based on the first syllable, followed by measures reflecting
consistency across the whole letter string. Finally, seman-
tic measures were entered in the final block to see if
semantics accounted for a significant amount of variance
after various surface, lexical, and phonological consistency
measures were controlled for. The eight steps allow us to
estimate the regression coefficients for predictors within
each step, without the influence of subsequently entered
correlated variables. For example, the first syllable (Step
6) and composite (Step 7) consistency measures are obvi-
ously correlated, since the composite consistency mea-
sures are based in part on the syllable 1 measures.
Entering these sets of variables in separate steps allows
one to estimate the unique influence of syllable 1 consis-
tency with greater fidelity, and importantly, to assess if
composite consistency measures account for additional
unique variance after syllable 1 consistency is controlled
for.

Tables 3 and 4 present the results of regression analyses
after surface and lexical predictors were entered. Tables 5
and 6 present the results of regression analyses when the
semantic variables (i.e., LSN and WordNet number of
senses) were entered. Note that the regression coefficients
reported in the tables reflect the coefficients for variables
entered in that particular step, rather than coefficients ob-
tained from entering all variables simultaneously in the
model. Analyses of RTs will first be presented, followed
by analyses of response accuracy.

Response latencies
Surface level variables (onsets). First, consider the effects of
the surface phonological onset variables in speeded pro-
nunciation. Unsurprisingly, the surface variables ac-
counted for more variance in speeded pronunciation than
in lexical decision (4.3% vs. 0.3%). However, it is very sur-
prising that the surface variables accounted for so little
variance in the multisyllabic dataset. We explored this fur-
ther by considering the 2428 monosyllabic words used in
both this study and the Balota et al. (2004) study. For those
words, onsets predicted 35% of the variance in speeded
pronunciation performance in the Balota et al. study and
34% of the variance in the present study. To rule out the
possibility that onsets are more variable for monosyllabic
words, we also compared 3410 monosyllabic and 3410
multisyllabic words which were matched on onsets. Onset
characteristics still accounted for 27.8% of the variance in
monosyllabic words and only 5.4% in multisyllabic words.
It is plausible that computing phonology or programing
articulation is considerably less complex for monosyllabic
words than for multisyllabic words. Multisyllabic pronun-
Please cite this article in press as: Yap, M. J., & Balota, D. A. Visua
ory and Language (2009), doi:10.1016/j.jml.2009.02.001
ciation implicates additional processes that deal with mor-
phology, stress assignment, vowel reduction, and co-
articulation mechanisms. If multisyllabic words indeed ex-
hibit greater variability in pronunciation performance than
monosyllabic words, and if one assumes that onset vari-
ables can only account for some finite amount of variance,
then it follows that onset variables should be able to ac-
count for a larger proportion of variance in monosyllabic
words, since there is less total variance to explain.

This explanation has to be qualified by the possibility
that the large onset effects in monosyllabic speeded pro-
nunciation are spuriously driven by a small subset of
words. Specifically, since voice keys have trouble with
words beginning with /s/, such words may be responsible
for onset variables accounting for so much variance in
monosyllabic words. To test this possibility, we examined
onset effects in monosyllabic words, with /s/ onset words
removed. The results of this analysis were mixed. When
/s/ onset words were dropped, the proportion of variance
accounted for by onsets dropped from 34% to 14% in the
present dataset. However, in the Balota et al. (2004) data-
set, this proportion was relatively unchanged, decreasing
to 33% from 35%. What could be accounting for these dif-
ferences? First, the same participants contributed data to
all words in the Balota et al. study, whereas in the ELP, par-
ticipants only responded to a subset of the 40,481 words,
and different sets of participants contributed data for dif-
ferent words. Second, different voice keys were used for
the two studies, and fricatives are particularly sensitive
to differences between voice keys. However, it is important
to note that even when /s/ onset words are excluded, on-
sets still account for far less variance in multisyllabic words
(2.8%) than in monosyllabic words (14%), suggesting that
the effect is real. Hence, it is possible that phonetic bias ef-
fects, which have been a source of concern in speeded pro-
nunciation experiments (Kessler et al., 2002), may play a
more subtle role in multisyllabic word recognition. It is
not the case that phonetic biases are irrelevant for multi-
syllabic words, but it is clear that their effects are over-
shadowed by other effects, suggesting that they are less
likely to spuriously produce effects due to their being con-
founded with other variables (cf. Kessler, Treiman, & Mul-
lennix, 2008).

Surface level variables (stress). Stress pattern (i.e., the posi-
tion of the stressed syllable), entered via four dummy-
coded variables, also accounted for additional variance
reliably after onsets were controlled for (9.3% of variance
in speeded pronunciation and 6.4% in lexical decision).
Note that words with stress on the first syllable formed
the reference group. In both speeded pronunciation and
lexical decision, the regression coefficients for the dum-
my-coded variables indicated that first-syllable-stress
words had the shortest RTs, followed by words with sec-
ond, third, and fourth-syllable-stress, respectively. How-
ever, these results may simply be due to the statistical
covariations between stress pattern and lexical variables.
For example, shorter words with fewer syllables (which
are recognized faster) are necessarily associated with
stress on the earlier syllables. When stress pattern effects
were examined after controlling for onsets and lexical vari-
l word recognition of multisyllabic words. Journal of Mem-



Table 3
Standardized RT and accuracy regression coefficients from Steps 1 to 7 of the item-level regression analyses for speeded pronunciation performance for
monosyllabic words, multisyllabic words, and all words. The p-value for each R2 change is represented with asterisks.

Predictor variable Monosyllabic words (n = 3524) Multisyllabic words (n = 6115) All words (n = 9639)

RT Accuracy RT Accuracy RT Accuracy

Surface variables (onsets)
R-square .280*** .000 .043*** .000 .052*** .003***

Surface variables (stress)
.136*** .026*** .188*** .044***

R-square NA NA DR2 = .093 DR2 = .026 DR2 = .136 DR2 = .041

Standard lexical variables
Number of syllables NA NA .225*** �.118*** .269*** �.164***

Length (number of letters) .110*** .013 .121*** .073*** .180*** .055**

Rank composite frequency �.388*** .448*** �.499*** .506*** �.438*** .489***

Orthographic N �.231*** .165*** �.072*** .038** �.082*** .071***

Phonological N .163*** �.169*** �.042*** .016 .086*** �.090***

.510*** .214*** .537*** .291*** .592*** .302***

R-square DR2 = .230 DR2 = .214 DR2 = .401 DR2 = .265 DR2 = .404 DR2 = .258

Quadratic length
Quadratic length .653*** �.378*** .424*** �.393*** .494*** �.320***

.519*** .217*** .541*** .295*** .598*** .304***

R-square DR2 = .009 DR2 = .003 DR2 = .004 DR2 = .004 DR2 = .006 DR2 = .002

Distance variables
L orthographic distance .022 .060 .142*** .028 .136*** .058*

L phonological distance .243*** �.243*** .298*** �.297*** .366*** �.385***

LOD neighborhood frequency .116*** �.124*** .127*** �.137*** .151*** �.165***

.549*** .243*** .588*** .327*** .642*** .337***

R-square DR2 = .030 DR2 = .026 DR2 = .047 DR2 = .032 DR2 = .044 DR2 = .033

Syllable 1 consistency variables
Feedforward onset consistency �.113*** .086*** �.055*** .022� �.058*** .034**

Feedforward rime consistency �.053*** .134*** �.023* .044*** �.029*** .077***

Feedback onset consistency �.091*** .025 �.043*** .020 �.038*** .015
Feedback rime consistency �.110*** .062*** �.070*** .037** �.071*** .041***

.584*** .271*** .600*** .331*** .653*** .345***

R-square DR2 = .035 DR2 = .028 DR2 = .012 DR2 = .004 DR2 = .011 DR2 = .008

Higher-order consistency variables
Distance consistency �.139*** .189*** �.148*** .104*** �.074*** .074**

Composite FF onset consistency NA NA �.048*** .024� �.045*** .027*

Composite FF rime consistency NA NA �.035** .041** �.044** .068***

Composite FB onset consistency NA NA .053*** �.011 .066*** �.028*

Composite FB rime consistency NA NA �.094*** .114*** �.074*** .103***

.586*** .275*** .612*** .342*** .659*** .351***

R-square DR2 = .002 DR2 = .004 DR2 = .012 DR2 = .011 DR2 = .006 DR2 = .006

* p < .05.
** p < .01.
*** p < .001.
� p < .10.
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ables (number of syllables, length, word frequency, ortho-
graphic and phonological neighborhood size), stress pat-
tern did not significantly predict RTs in either task. Of
course, including a large number of words with varying
lengths, structures, and number of syllables may have ob-
scured stress pattern effects in our analysis. However, it is
interesting that Chateau and Jared (2003) also noted that
stress pattern was a relatively weak predictor of pronunci-
ation latencies in their study. In fact, latencies were reli-
ably faster for first-syllable-stress words only in the
analysis when all the consistency predictors were entered,
i.e., the analysis with 477 CVCCVC words. In contrast, error
rates were reliably lower for first-syllable-stress words in
all but one analysis, although Chateau and Jared caution
that this might be spuriously driven by the relative rarity
Please cite this article in press as: Yap, M. J., & Balota, D. A. Visua
ory and Language (2009), doi:10.1016/j.jml.2009.02.001
of second-syllable-stress words in their stimuli. When we
restricted our analysis to disyllabic words, we found that
first-syllable-stress words were faster, but this advantage
was restricted to the speeded pronunciation task. Thus,
although there is some evidence for stress pattern RT ef-
fects in disyllabic words, the extent to which these effects
generalize to longer words remains unclear. On the whole,
this seems consistent with reports that stress pattern (Cha-
teau & Jared) and stress typicality (Arciuli & Cupples, 2006)
effects are more salient in error rates than in RTs.

Standard lexical variables
Length (number of letters) and number of syllables. As shown
in Tables 3 and 4, length and number of syllables were both
positively associated with pronunciation and lexical deci-
l word recognition of multisyllabic words. Journal of Mem-



Table 4
Standardized RT and accuracy regression coefficients from Steps 1 to 7 of the item-level regression analyses for lexical decision performance for monosyllabic
words, multisyllabic words, and all words. The p-value for each R2 change is represented with asterisks.

Predictor variable Monosyllabic words (n = 3524) Multisyllabic words (n = 6115) All words (n = 9639)

RT Accuracy RT Accuracy RT Accuracy

Surface variables (onsets)
R-square .005** .002� .003** .002* .007 .001

Surface variables (stress)
.067*** .011*** .094*** .014***

R-square NA NA DR2 = .064 DR2 = .009 DR2 = .087 DR2 = .013

Standard Lexical Variables
Number of syllables NA NA .164*** �.076*** .213*** �.120***

Length (number of letters) �.098*** .173*** .081*** .134*** .068*** .172***

Rank composite frequency �.726*** .718*** �.646*** .708*** �.644*** .731***

Orthographic N �.145*** .116*** �.061*** .050*** �.055*** .063***

Phonological N .071*** �.110*** �.002 �.013 .069*** �.095***

.533*** .496*** .573*** .494*** .619*** .504***

R-square DR2 = .528 DR2 = .494 DR2 = .506 DR2 = .483 DR2 = .525 DR2 = .490

Quadratic length
Quadratic length .592*** �.328*** .593*** �.369*** .648*** �.403***

.541*** .498*** .580*** .497*** .630*** .509***

R-square DR2 = .008 DR2 = .002 DR2 = .007 DR2 = .003 DR2 = .011 DR2 = .005

Distance variables
L orthographic distance .054 �.036 .186*** �.155*** .179*** �.149***

L phonological distance .103*** �.094*** .187*** �.147*** .200*** �.166***

LOD neighborhood frequency .113*** �.160*** .097*** �.135*** .116*** �.171***

.551*** .512*** .610*** .522*** .653*** .530***

R-square DR2 = .010 DR2 = .014 DR2 = .030 DR2 = .025 DR2 = .023 DR2 = .021

Syllable 1 consistency variables
Feedforward onset consistency �.029* .020 �.010 .024* �.014� .024**

Feedforward rime consistency �.030* .050*** .017� .010 �.008 .039***

Feedback onset consistency �.012 �.005 �.019� .005 �.015* .003
Feedback rime consistency �.022� .015 �.037*** .021* �.027*** .017*

.553** .514*** .612*** .523*** .654*** .532**

R-square DR2 = .002 DR2 = .002 DR2 = .002 DR2 = .001 DR2 = .001 DR2 = .002

Higher-order consistency variables
Distance consistency �.057 .091* �.101*** .072** �.094*** .085***

Composite FF onset consistency NA NA �.008 �.003 �.010 �.008
Composite FF rime consistency NA NA �.013 .008 �.017 .018
Composite FB onset consistency NA NA .054*** �.003 .043*** .003
Composite FB rime consistency NA NA �.037** .048*** �.029** .042**

.553 .515* .616*** .525*** .656*** .533***

R-square DR2 = .000 DR2 = .001 DR2 = .004 DR2 = .002 DR2 = .002 DR2 = .001

* p < .05.
** p < .01.
*** p < .001.
� p < .10.
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sion latencies. Unsurprisingly, as the length increased, rec-
ognition times became slower. The quadratic effect of
length was also significant in both tasks, although it ac-
counted for more unique additional variance in lexical
decision (R2 change = 0.7%) than in pronunciation (R2

change = 0.4%) performance. More interestingly, number
of syllables was positively correlated with response times.
In order to test this more rigorously, a secondary analysis
was conducted where the unique effect of number of sylla-
bles was assessed in pronunciation and lexical decision
performance, after all the surface, lexical, and consistency
variables were controlled for, along with an additional
measure of length which reflects the number of phonemes.
The results were clear. In a large database of monomorphe-
mic multisyllabic words, controlling for all relevant vari-
ables, number of syllables was strongly and positively
Please cite this article in press as: Yap, M. J., & Balota, D. A. Visua
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correlated with pronunciation times, b = .077, p < .001,
and lexical decision times, b = .049, p < .001.

Orthographic and phonological N. Orthographic N was neg-
atively correlated with RTs in speeded pronunciation and
lexical decision, indicating that words with many ortho-
graphic neighbors were recognized faster, even after pho-
nological N was controlled for. Furthermore, the
observation that facilitatory effects of orthographic N were
stronger in pronunciation than in lexical decision is consis-
tent with the notion that these effects could reflect the
sublexical orthography-to-phonology procedure, which is
emphasized to a greater extent in pronunciation than in
lexical decision (see Andrews, 1997, for a discussion of this
perspective). In contrast, phonological N facilitated pro-
nunciation, but not lexical decision, performance, which
l word recognition of multisyllabic words. Journal of Mem-



Table 5
Standardized RT and accuracy regression coefficients for Step 8 (semantic predictors) of the item-level regression analyses for speeded pronunciation
performance for monosyllabic words, multisyllabic words, and all words. The p-value for each R2 change is represented with asterisks.

Predictor variable Monosyllabic words (n = 3226) Multisyllabic words (n = 5176) All words (n = 8402)

RT Accuracy RT Accuracy RT Accuracy

Surface Variables
R-square .293*** .000 .128*** .019*** .182*** .036***

All lexical variables
R-square .593*** .274*** .618*** .347*** .663*** .355***

Semantic variables
Local semantic neighborhood size .007 �.041* �.042** �.067*** �.036*** �.035**

WordNet number of senses �.064*** .011 �.024* �.022� �.006 �.040***

R-square .596*** .274� .619*** .348*** .663*** .357***

* p < .05.
** p < .01.

*** p < .001.
� p < .10.

Table 6
Standardized RT and accuracy regression coefficients for Step 8 (semantic predictors) of the item-level regression analyses for lexical decision performance for
monosyllabic words, multisyllabic words, and all words. The p-value for each R2 change is represented with asterisks.

Predictor variable Monosyllabic words (n = 3226) Multisyllabic words (n = 5176) All words (n = 8402)

RT Accuracy RT Accuracy RT Accuracy

Surface variables
R-square .004** .003 .056*** .009*** .085*** .012***

All lexical variables
R-square .581*** .520*** .625*** .525*** .668*** .536***

Semantic variables
Local semantic neighborhood size .019 .008 �.075*** .023 �.033*** .019�

WordNet number of senses �.122*** .052*** �.066*** �.005 �.083*** .014
R-square .591*** .522** .630*** .525 .673*** .536�

** p < .01.
*** p < .001.
� p < .10.
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is inconsistent with studies showing facilitation in lexical
decision (Yates, 2005; Yates, Locker, & Simpson, 2004).
However, for monosyllabic words in both tasks, when
orthographic and phonological N were entered together,
one observes facilitation for orthographic N but inhibition
for phonological N. These intriguing findings will be dis-
cussed further in the General Discussion.

Word frequency. Composite rank frequency was negatively
correlated with pronunciation and lexical decision laten-
cies, with shorter latencies for more frequent words. The
regression analyses (see Tables 3 and 4) also indicate that
the predictive power of word frequency was larger in lex-
ical decision than in speeded pronunciation performance,
consistent with what Balota et al. (2004) found. Word-fre-
quency effects may be exaggerated in lexical decision be-
cause of the task’s emphasis on frequency-based
information for discriminating between familiar words
and unfamiliar non-words (cf. Balota & Chumbley, 1984).

Levenshtein orthographic distance (LOD), Levenshtein
phonological distance (LPD), and Levenshtein neighborhood
frequency (LODNF). Turning to the distance measures, LOD,
LPD, and LODNF produced reliable effects in both pronun-
Please cite this article in press as: Yap, M. J., & Balota, D. A. Visua
ory and Language (2009), doi:10.1016/j.jml.2009.02.001
ciation and lexical decision, such that all were positively
correlated with RTs. That is, words that are orthographi-
cally and phonologically more distinct were recognized
more slowly. Similarly, words which possess neighbors
with higher word frequencies were recognized more
slowly. It is very clear that these new measures of ortho-
graphic and phonological similarity are powerful predic-
tors compared to traditional measures of orthographic
and phonological neighborhoods (see detailed analyses in
Yarkoni et al., 2008). This is likely due to the greater utility
of these measures for longer words, as discussed earlier.
When orthographic and phonological neighborhood were
entered after the Levenshtein measures, orthographic
neighborhood size no longer accounted for unique vari-
ance, and the regression coefficients for phonological
neighborhood size reverse in speeded pronunciation,
b = .029, p = .012, and lexical decision, b = .046, p < .001,
suggesting suppression.

Syllable 1 phonological consistency. Syllable 1 consistency
measures accounted for more incremental variance in
speeded pronunciation (1.2%) than in lexical decision
(0.2%). For Syllable 1 phonological consistency measures,
feedforward and feedback consistency for both onsets
l word recognition of multisyllabic words. Journal of Mem-
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and rimes, were all negatively correlated with pronuncia-
tion RTs. Increasing the consistency of the spelling-sound
mapping shortened pronunciation times; this operated in
both directions, from spelling-to-sound, and from sound-
to-spelling. In lexical decision, only feedback rime consis-
tency produced a reliable effect, with consistent words
eliciting faster lexical decision RTs (Stone et al., 1997).
Interestingly, in lexical decision, facilitatory effects of feed-
forward consistency were observed for monosyllabic, but
not multisyllabic, words.

Higher order phonological consistency. Reliable effects of
higher-order consistency were observed in both tasks,
although consistency again accounted for more incremen-
tal variance in pronunciation. These higher-order consis-
tency variables include: (1) composite consistency
measures that average consistency across syllables, and
(2) a consistency measure based on Levenshtein distances.
The former reflect consistency mappings beyond the initial
syllable, while the latter reflects consistency mappings
that transcend syllabic boundaries. As mentioned earlier,
Levenshtein phonological consistency is not syllabically
defined, and hence should be sensitive to grain sizes both
smaller and larger than syllables. For speeded pronuncia-
tion, effects of distance consistency and all four composite
consistency measures were significant; specifically, with
the only exception being feedback onset consistency, (refer
to footnote2). more consistent items were associated with
faster latencies. For lexical decision performance, Levensh-
tein distance consistency was also significant, with consis-
tent items producing faster latencies. However, for the
composite measures, only feedback onset and feedback rime
consistency effects were significant in lexical decision per-
formance; latencies to feedback rime consistent words were
faster while latencies to feedback onset consistent words
were slower. Collectively, these results indicate that consis-
tency effects, especially in pronunciation, operate beyond
the first syllable. Hence, even though syllabically-defined
onset and rime consistency are important aspects of phono-
logical consistency in multisyllabic words, it is clear that
consistency mappings for non-syllabic grain sizes are also
important.

Semantic variables
Finally, it is clear that semantic measures were able to

account for some unique variance in pronunciation and
lexical decision (see Tables 5 and 6) after other relevant
variables were controlled for. Generally, semantic variables
accounted for more incremental variance in lexical deci-
2 The observation of inhibitory composite feedback onset (FBO) consis-
tency effects in both tasks (i.e., slower latencies for words with greater
feedback onset consistency) is anomalous and perplexing. Clearly, every
other consistency measure in the regression model is producing facilitatory
effects. Follow-up analyses indicate that this inhibitory effect is only
observed with post syllable 1 onsets. That is, in multisyllabic words,
syllable 1 FBO consistency produces facilitatory effects, but the FBO
consistency of later syllables (i.e., syllable 2 for disyllabic words, and
syllables 2 and 3 for trisyllabic words) produce inhibitory effects. These
trends are also present in zero-order correlations, suggesting that the
inhibitory pattern is not simply due to composite FBO consistency being
entered with other predictors in the regression model.
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sion (0.5%) than in pronunciation (0.1%) performance,
which is consistent with lexical decision’s emphasis on
semantic information for word–non-word discrimination.
Local semantic neighborhood size was negatively corre-
lated with RTs in both pronunciation and lexical decision.
Specifically, words associated with denser semantic neigh-
borhoods (i.e., more neighbors within a certain radius)
were recognized more quickly. WordNet number of senses
was negatively correlated with RTs in lexical decision and
pronunciation; words with more meanings were recog-
nized more quickly. Generally speaking, there are reliable
(albeit subtle) effects of semantic variables in word recog-
nition performance, even after a very substantial propor-
tion of variance in the dependent measures has already
been accounted for.

Response accuracy
Surface level variables. Onsets accounted for virtually no
variance in speeded pronunciation and lexical decision
accuracy (see Tables 3 and 4). This is consistent with the no-
tion that onset coding primarily influence RTs, rather than
accuracy, due to temporal biases in voice key sensitivity.
In both tasks, stress pattern also accounted for relatively lit-
tle variance in accuracy. However, even after onsets and
lexical covariates were controlled for, stress pattern ac-
counted for unique variance in both tasks. In speeded pro-
nunciation, first-syllable-stress words had reliably more
accurate responses than words with second, third, and
fourth-syllable-stress. In lexical decision, the accuracy of
first-syllable-stress words was significantly higher than
that of third- and fourth-syllable-stress words. As discussed
earlier, this is in line with the general finding that stress ef-
fects are more readily observed in error rates than in RTs
(Arciuli & Cupples, 2006; Chateau & Jared, 2003).

Lexical and semantic variables. For the standard lexical vari-
ables, the pattern in accuracy broadly mirrored the pattern
in RTs (see Tables 3 and 4). There were two notable excep-
tions to this trend. First, in both speeded pronunciation
and lexical decision, length had inhibitory effects in RTs
but facilitatory effects in accuracy. To explore this discrep-
ancy, we first examined the zero-order correlations be-
tween length and accuracy on the two tasks. Length was
weakly and negatively correlated with accuracy on both
speeded pronunciation (r = �.171) and lexical decision
(r = �.107); at the zero order, length has weak inhibitory
effects on accuracy. We next computed standardized resid-
uals for accuracy for both tasks, after partialling out surface
variables, frequency, number of syllables, and neighbor-
hood size. We then used a median split to classify words
as short or long, before computing mean standardized
residuals as a function of length. Here, we found that short
words were associated with lower accuracy on both tasks,
consistent with the regression analysis. We do not have a
good explanation for this finding, but suggest that it should
be interpreted with caution. Zero-order length effects in
accuracy were relatively small, and given length’s moder-
ate to large correlations with other lexical variables, it is
likely that the reversal in the length coefficient could be
due to a suppressor relationship between length and the
other lexical variables.
l word recognition of multisyllabic words. Journal of Mem-
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Similarly, regression coefficients for the two semantic
variables were in the wrong direction for speeded pronun-
ciation accuracy (but not for lexical decision). Specifically,
words with more senses and denser semantic neighbor-
hoods produced more errors. Since this did not occur in
lexical decision, it appears to be a task-specific effect. That
could be explained as greater competition between seman-
tic neighbors taking place at the level of phonology or
articulation, which lowers overall pronunciation accuracy.
It is strange that this effect should be observed in accuracy
but not in RTs. Clearly, more work needs to be done to ad-
dress this puzzle.

Theoretically motivated interactions
The foregoing analyses dealt with the main effects of

different variables on word recognition performance. We
also selected and tested a number of interactions: (1) the
length � frequency interaction, (2) the orthographic
N � frequency interaction, (3) the consistency � frequency
interaction, (4) the number of syllables � frequency inter-
action, and (5) the consistency � frequency � semantics
interaction. So far, most of these interactions have been ex-
plored primarily with monosyllabic words, and hence, it is
important to determine if they are present in multisyllabic
words. Obviously, an almost limitless number of interac-
tions could potentially be tested, but these interactions
were targeted because of their theoretical importance.
The theoretical rationale for exploring each interaction will
be provided before the corresponding analyses.

Regression interactions were tested using the technique
advocated by Cohen, Cohen, West, and Aiken (2003). Spe-
cifically, the variables of interest (and other control vari-
ables) were first entered in the regression model,
followed by the interaction term in the following step,
and the R-square change between the two regression mod-
els (without and with the interaction term) was then mea-
sured. Essentially, this method tests the interaction while
controlling for the main effects of the variables, along with
other potentially confounding variables. Note that this
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Fig. 3. Word frequency � length interaction. The bars represent the standardized
frequency words, for both pronunciation and lexical decision. Error bars denote
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method uses the full regression model, and statistical
power is maximized because continuous variables are not
reduced to categories. For reliable interactions, a plot of
the interaction is made by computing the slope of one var-
iable at different levels of the other variable. Unless stated
otherwise, the same standard lexical variables (i.e., surface
variables, length, number of syllables, word frequency,
orthographic N, phonological N) were entered as control
variables in all these analyses.
Length � frequency interaction. Weekes (1997) reported
that length effects were stronger for low-frequency, com-
pared to high-frequency, words. This finding has been ta-
ken as critical support for the dual route cascaded (DRC)
model of word recognition (Coltheart et al., 2001), be-
cause the recognition of low-frequency words is more
likely to reflect the serial, sublexical procedure while
the recognition of high-frequency words is assumed to re-
flect the parallel lexical procedure. Fig. 3 presents the
length � frequency interaction for the 6115 multisyllabic
words. The length � frequency interaction was reliable
in pronunciation, b = �.105, p < .001, and approached sig-
nificance in lexical decision, b = �.014, p = .092; adding
phoneme length as a covariate did not modulate the pat-
tern. In both tasks, as word frequency increased, length
effects became smaller (see Fig. 3), and the interaction
is much larger in pronunciation than in lexical decision
performance. While these results are certainly consistent
with the serial mechanism in the dual route framework,
it is important to point out that a serial procedure is
not the only way to produce length effects. For example,
length effects may also be generated through dispersion
(i.e., longer words are associated with less frequent and
more difficult spelling-sound correspondences) or periph-
eral visual and articulatory processes (see Perry, Ziegler, &
Zorzi, 2007, for more discussion). Hence, other perspec-
tives may in principle be able to accommodate the
interaction.
n frequency High frequency

Pronunciation
LDT

regression coefficient for length as a function of high-, medium-, and low-
standard errors.

l word recognition of multisyllabic words. Journal of Mem-
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Fig. 4. Word frequency � orthographic N interaction. The bars represent the standardized regression coefficient for orthographic N as a function of high-,
medium-, and low-frequency words, for both pronunciation and lexical decision. Error bars denote standard errors.

3 We also tested the word frequency � consistency interaction using
composite feedforward rime consistency. The same interactive pattern was
observed in speeded pronunciation (p = .001) but not in lexical decision
(p = .70), suggesting that the Levenshtein-based consistency measure may
be more sensitive than the composite feedforward rime measure.
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Orthographic N � frequency interaction. Andrews (1989,
1992) demonstrated that the facilitatory effects of ortho-
graphic N (i.e., faster latencies when there are more neigh-
bors) were stronger for low-frequency words than for
high-frequency words, in both speeded pronunciation
and lexical decision. Using the interactive activation
framework (McClelland & Rumelhart, 1981), Andrews
(1989) argued that presenting a word activates the word
and its orthographic neighbors, and these partially acti-
vated units activate sublexical units (e.g., letters) and are
in turn activated by them. Words with many neighbors
benefit more from this reciprocal activation because more
units are involved. More importantly, she speculated that
high-frequency words show smaller orthographic N effects
because they achieve recognition threshold so quickly that
they are less affected by the reverberations between lexical
and sublexical units. Alternatively, if one assumes that
facilitatory effects of orthographic N reflect sublexical pro-
cesses (cf. Andrews, 1997), then it follows that facilitatory
orthographic neighborhood effects should be more pro-
nounced for lower frequency words (since these words
are more likely to be influenced by the sublexical path-
way). Although the interaction has been observed across
different studies (see also Sears, Hino, & Lupker, 1995), it
is interesting that this is one of the few effects that both
the DRC (Coltheart et al., 2001) and the CDP+ (Perry
et al., 2007) models have difficulty simulating. The present
results clearly extend the interaction observed with mono-
syllabic words to multisyllabic words. Specifically, the
orthographic N � frequency interaction was significant in
both pronunciation, b = .125, p < .001, and lexical decision,
b = .059, p < .001, although the effect was stronger in pro-
nunciation. In both tasks, the facilitatory effects of ortho-
graphic neighborhood effects were strongest for low-
frequency and weakest for high-frequency words (see
Fig. 4).

Consistency � frequency interaction. The regularity � fre-
quency interaction, where low-frequency words show lar-
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ger regularity effects than high-frequency words
(Andrews, 1982; Seidenberg et al., 1984) is one of the
benchmark effects in the word recognition literature. This
interaction was initially viewed as support for the dual
route model, although it was later shown that the connec-
tionist perspective (Seidenberg & McClelland, 1989) could
also handle the interaction. Subsequent work pitting regu-
larity against consistency (e.g., Cortese & Simpson, 2000;
Jared, 2002) suggests that consistency, compared to regu-
larity, better captures the mapping between spelling and
sound. Interestingly, Jared examined consistency and
word-frequency effects in a tightly controlled factorial
study and observed a weak but reliable interaction (by
subjects) between the two variables, with larger consis-
tency effects for low-frequency words. However, it is
important to point out that the interaction was not signif-
icant by items, suggesting that it is less robust than the lit-
erature suggests and may be driven by a confound
between word frequency and the neighborhood character-
istics of words. Specifically, there may be larger consis-
tency effects for low-frequency words because low-
frequency words are more likely to possess neighborhoods
where the summed frequency of friends is low relative to
the summed frequency of enemies. To test the interaction,
the Levenshtein distance-based consistency measure,3

which works as a global measure of consistency across the
letter string, was used. The consistency � frequency interac-
tion was significant in both pronunciation, b = .082, p < .001,
and in lexical decision, b = .047, p < .001; the interaction was
also stronger in pronunciation (see Fig. 5). Consistency ef-
fects (i.e., faster latencies for consistent words) were stron-
gest for low-frequency words, decreasing in magnitude as
word frequency increased; this occurred in both tasks but
l word recognition of multisyllabic words. Journal of Mem-
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was more salient in pronunciation. Interestingly, although
consistency effects were weaker for high-frequency words,
they were still reliable in both speeded pronunciation
(p < .001) and lexical decision (p < .001), which meshes well
with Jared’s (1997) and Jared’s (2002) finding of consistency
effects for high-frequency words.

Number of syllables � frequency. Jared and Seidenberg
(1990, Experiment 3) demonstrated that number of sylla-
bles was related to speeded pronunciation latencies, but
only for low-frequency words. Since number of syllables
effects was absent for words with familiar orthographic
patterns (i.e., high-frequency words), Jared and Seidenberg
suggested that it is unlikely that there is an explicit syllab-
ification procedure for all words. This interaction has been
replicated in French, in both speeded pronunciation (Fer-
rand, 2000) and lexical decision (Ferrand & New, 2003,
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Fig. 6. Word frequency � number of syllables interaction. The bars represent the
high-, medium-, and low-frequency words, for both pronunciation and lexical d
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Experiment 2). Fig. 6 presents the number of sylla-
bles � frequency interaction for the 6115 multisyllabic
words. The number of syllables � frequency interaction
was reliable in speeded pronunciation, b = �.118, p < .001,
and in lexical decision, b = �.025, p = .004. In both tasks,
as word frequency increased, number of syllables effects
became smaller, and the interaction was substantially lar-
ger in pronunciation than in lexical decision performance.
The larger number of syllables effect observed for low-fre-
quency words is consistent with previous studies, but it is
noteworthy that even high-frequency words show reliable
(albeit smaller) effects of number of syllables (ps < .001 for
both speeded pronunciation and lexical decision).

Consistency � frequency � semantics. Strain et al. (1995) re-
ported an intriguing interaction between spelling-to-
sound consistency, word frequency, and imageability;
 frequency High frequency

Pronunciation

LDT

standardized regression coefficient for number of syllables as a function of
ecision. Error bars denote standard errors.
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low-frequency words with inconsistent spelling-to-sound
mappings produced the largest imageability effects. The
Strain et al. finding was viewed as consistent with Plaut
et al.’s (1996) triangle model, which predicts that semantic
representations should exert stronger effects when the
orthography-to-phonology pathway is noisy, as it is when
low-frequency, inconsistent words are processed. This
three-way interaction was tested in the present data-set,
with Levenshtein distance consistency used as a proxy
for consistency. Unfortunately, imageability norms are
not available for most of the multisyllabic words. Since it
is unclear if local semantic neighborhood size or WordNet
number of senses function as better proxies for semantics,
the three-way interaction was tested independently with
each of the two semantic measures. For both tasks, the
three-way interaction was not significant whether local
semantic neighborhood size (speeded pronunciation,
p = .99; lexical decision, p = .48) or WordNet number of
senses (speeded pronunciation, p = .21; lexical decision,
p = .20) was used. This is in line with Balota et al.’s
(2004) conclusion that interactive effects of meaning-level
variables are very small, after they failed to detect the con-
sistency � frequency � imageability interaction in their
database of 2428 monosyllabic words (compared to over
5000 multisyllabic words in the present analyses). Of
course, our results depend on the measures of consistency
and semantics we used, and it is possible that the interac-
tion may emerge when alternative measures are used.

Analyses specific to multisyllabic words
Context-sensitive phonological consistency. Thus far, phono-
logical consistency has been operationalized in a fairly
simplistic manner, either defined narrowly at the level of
onsets and rimes within individual syllables, or at a more
holistic level by examining the discrepancy between
Levenshtein orthographic and phonological distances. The
present results indicate that syllabically-defined consis-
tency measures account for unique variance, supporting
the idea that syllables play a role in visual word recogni-
tion. Of course, it is not our claim that syllables are the only
sublexical unit that mediates lexical access. We have dis-
cussed how consistency probably also operates at the level
of larger, higher-order units that span syllabic boundaries.
For example, BOB effects (Chateau & Jared, 2003) are evi-
dence that readers are able to take advantage of extrasyl-
labic contextual cues for determining the pronunciation
of a rime (e.g., using d in mea-dow to constrain the pronun-
ciation of ea). The extrasyllabic hypothesis can be tested by
assessing if contextual consistency accounts for word rec-
ognition performance above and beyond consistency de-
fined within the syllable. In the following analysis, we
tested four new consistency measures (B. Kessler, personal
communication, September 2, 2006; see Yap, 2007, for fur-
ther details) that take into account contextual information
outside the syllable. Specifically, these measures are: (1)
Syllable 1 rime feedforward consistency, taking syllable 2
onset spelling into account; (2) Syllable 1 rime feedfor-
ward consistency, taking syllable 2 onset phonology into
account; (3) Syllable 1 rime feedback consistency, taking
syllable 2 onset spelling into account; and (4) Syllable 1
rime feedback consistency, taking syllable 2 onset phonol-
Please cite this article in press as: Yap, M. J., & Balota, D. A. Visua
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ogy into account. These are conditional probability mea-
sures that consider the identity of an additional unit in a
separate syllable. For example, the conditional consistency
of the correspondence er ? /@‘/ in syllable 1, given the
spelling onset d in the second syllable, is defined as the
consistency of er ? /@‘/, examining only words with the
onset d in the second syllable (Kessler & Treiman, 2001).
To make this more concrete, consider the rime us, which
in English, typically maps onto /Vs/ when it occurs in the
first syllable (e.g., custard, gusto). It only rarely maps onto
/Vz/ (e.g., muslin) or /Uz/ (e.g., muslim); these two words
have low syllable 1 feedforward rime consistency. How-
ever, in disyllabic monomorphemic words, the rime us in
syllable 1 is followed by the letter l for only two words,
mus-lin and mus-lim. Hence, if one considers only words
where us is followed by l in the second syllable, the feed-
forward rime consistency of us goes up to .5 for each of
these two words, which is somewhat higher than their
unconditional consistency.

These measures were entered into a regression model
after syllabically-defined consistency measures and other
lexical variables were entered (see Table 7). In order to
ensure comparability with Chateau and Jared’s (2003)
disyllabic study, only disyllabic words were included.
Even after syllable 1 consistency measures and compos-
ite consistency measures were entered into the model,
the contextual consistency measures still accounted for
an additional 0.4% (p < .001) of variance in speeded pro-
nunciation and an additional 0.1% (p = .009) of variance
in lexical decision. Unsurprisingly, contextual consistency
accounted for more variance in pronunciation than in
lexical decision performance. In both tasks, syllable 1
feedback rime consistency given syllable 2 onset phonol-
ogy was facilitatory, suggesting that sound-to-spelling
consistency effects for the rime in the first syllable is
modulated by the pronunciation of the onset in the sec-
ond syllable. The syllable 1 feedforward rime consistency
| syllable 2 onset phonology effect was also borderline
significant (p = .05) in speeded pronunciation, indicating
that the constraining influence of the second syllable on-
set applies to first syllable spelling-to-sound consistency
as well. Collectively, even though these effects are small
compared to the syllabic consistency effects, they indi-
cate that readers are also able to take advantage of
extrasyllabic contextual information to help them con-
strain the pronunciation of the rime in the first syllable,
in both pronunciation and lexical decision. These results
are also broadly compatible with Chateau and Jared’s
(2003) BOB effects.
General discussion

This present study examined the influence of major
psycholinguistic variables on the word recognition per-
formance of 6115 monomorphemic multisyllabic English
words. Extant theories and models in visual word recog-
nition have been overwhelmingly informed by the study
of monosyllabic words, and researchers in the word rec-
ognition domain have consistently pointed towards mul-
tisyllabic words as the important next step.
l word recognition of multisyllabic words. Journal of Mem-



Table 7
Standardized RT regression coefficients for contextual consistency mea-
sures (Step 6) in speeded pronunciation and lexical decision performance.

R-square p P (R-sq change)

Speeded pronunciation (n = 4243)
Step 1: phonological onsets .090 <.001
Step 2: stress .102 <.001
Step 3: lexical variables .507 <.001
Step 4: syllable 1 phonological

consistency
.523 <.001

Step 5: composite consistency .534 <.001
Step 6: contextual consistency .538 <.001

beta p-value
FF S1 rime consistency| S2 onset

spelling
�.017 ns

FF S1 rime consistency| S2 onset
phonology

�.041 .050

FB S1 rime consistency| S2 onset
spelling

.005 ns

FB S1 rime consistency| S2 onset
phonology

�.080 <.001

Lexical decision (n = 4243)
Step 1: phonological Onsets .008 <.001
Step 2: stress .011 .002
Step 3: lexical variables .560 <.001
Step 4: syllable 1 phonological

consistency
.561 .001

Step 5: composite consistency .564 <.001
Step 6: contextual consistency .565 .004

beta p-value
FF S1 rime consistency| S2 onset

spelling
.021 ns

FF S1 rime consistency| S2 onset
phonology

�.034 .094

FB S1 rime consistency| S2 onset
spelling

.058 .010

FB S1 rime consistency| S2 onset
phonology

�.080 <.001
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The approach we have taken can be extended in a num-
ber of different directions. The most obvious and natu-
ral extension is to the reading of multisyllabic words.
(Plaut et al., 1996, p. 106).
All of the current computational models of reading Eng-
lish, including the DRC model, are restricted to the pro-
cessing of monosyllabic stimuli. The problems
encountered when items of more than one syllable are
considered are numerous. . . [and] have been underrep-
resented in the psycholinguistic literature and virtually
ignored in modeling reading. (Coltheart et al., 2001, p.
249).
Finally, CDP+ is limited to monosyllabic words, as are
the other computational models we have discussed.
This reflects the fact that most of the empirical evidence
on written word naming comes from research con-
ducted with monosyllabic words. Although most of
the words people read are monosyllabic according to a
token count, the majority of the words in the lexicon
are polysyllabic according to a type count. (Perry
et al., 2007, p. 304).

The results reported in this paper represent important
new constraints for present and emerging models of mul-
tisyllabic visual word recognition.
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What are the specific multisyllabic effects that visual word
recognition models need to accommodate?

One of the interesting observations that emerged from
the present analyses is that by and large, the processing
of multisyllabic words does not appear to be radically dif-
ferent from the way monosyllabic words are processed. For
example, if one were to compare effects in monosyllabic
words against effects in multisyllabic words (see Tables 3
and 4), there is a high degree of concordance with respect
to how the classic lexical variables (e.g., word frequency,
orthographic N, phonological consistency) behave. On the
whole, this is encouraging, and confirms that experimental
work based on monosyllabic words is not simply idiosyn-
cratic to monosyllabic words. However, it is also important
to point out that studying multisyllabic words yielded a
number of important observations that could not have
been obtained simply by studying monosyllabic words.
These effects will now be highlighted in the following
sections.

The role of onsets
One of the surprising findings in this study is that pho-

nological onsets account for relatively less variance in mul-
tisyllabic than in monosyllabic pronunciation
performance. This might be due to multisyllabic pronunci-
ation being necessarily more complex, involving additional
mechanisms for stress assignment and vowel reduction. If
onsets can only account for a finite amount of variance, and
there is more total variance to explain in multisyllabic
word performance, it follows that onsets will account for
a smaller proportion of total variance when such items
are examined. The more important point here is that one
must be cautious about generalizing the size of an effect
from monosyllabic words to larger classes of words.

The role of the syllable
As discussed in the Introduction, some researchers in

visual word recognition are skeptical that the syllable
plays an important role in lexical access, given that not
all English words possess clear syllabic boundaries. Our re-
sults are consistent with Chateau and Jared’s (2003) view
that there are multiple codes mediating lexical access
and output processes, and the syllable is one of those
codes. Two pieces of evidence are relevant here. First, pro-
nunciation and lexical decision latencies were positively
correlated with the number of syllables in a word, even
after important length covariates such as length and pho-
nemes, along with other covariates like word frequency,
neighborhood size, and phonological consistency were
controlled for. The consistency control variables are partic-
ularly important because Jared and Seidenberg (1990) have
argued that number of syllables effects are artifactually
driven by number of syllables being confounded with pho-
nological consistency. Second, like Chateau and Jared
(2003), syllabically-defined consistency measures (e.g., syl-
lable 1 feedforward rime consistency) were able to account
for variance in both pronunciation and lexical decision per-
formance, with effects observed more strongly in pronun-
ciation. It is worth noting that our results also indicate
that participants are sensitive to units other than the sylla-
l word recognition of multisyllabic words. Journal of Mem-
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ble. Specifically, the distance consistency measure (which
is not syllabically defined) and consistency measures that
consider extrasyllabic cues are accounting for variance
above and beyond that accounted for by syllabically-de-
fined consistency.

Feedforward and feedback consistency
The correspondence between spelling and sound was

operationalized via continuous measures of feedforward
(spelling-to-sound) and feedback (sound-to-spelling) con-
sistency. The effects of consistency were clearly task-mod-
ulated. For example, facilitatory effects of feedforward
onset and rime consistency were present in speeded pro-
nunciation, but not in lexical decision (see Tables 3 and
4), reflecting the pronunciation task’s emphasis on con-
verting spelling-to-sound. Interestingly, we observed feed-
back (but not feedforward) effects in lexical decision,
which is compatible with a word recognition system
where there is a bidirectional flow of activation between
orthographic and phonological representations. To the ex-
tent that there is a match between phonology and orthog-
raphy, there may be a type of resonance, allowing the
system to converge more rapidly on a lexical candidate
(Stone et al., 1997). The feedback consistency literature
has been mixed, and reliable effects have been observed
in some studies, in lexical decision (Lacruz & Folk, 2004;
Perry, 2003; Stone et al., 1997) and speeded pronunciation
(Balota et al., 2004; Lacruz & Folk, 2004), but these effects
have not been replicated in other studies (Massaro & Jesse,
2005; Ziegler et al., 2008). Ziegler et al., in particular, have
strongly argued that feedback consistency effects in the vi-
sual modality are spurious, and are most likely due to
uncontrolled variables. To test for feedback consistency
more stringently, we entered feedback consistency mea-
sures after all other surface, lexical, feedforward consis-
tency, and semantic measures were entered. Adding
feedback consistency still resulted in a small but signifi-
cant increase in the variance accounted for (speeded pro-
nunciation = 1.0%; lexical decision = 0.3%). Of course, it is
quite possible that there are other variables we have not
controlled for, but it is striking that feedback consistency
effects remain reliable in multisyllabic word recognition,
after a very large number of major covariates (more than
any extant study) have been controlled for.

Given that the consistency measures accounted for a
relatively modest amount of unique variance (2.4% in
speeded pronunciation and 0.6% in lexical decision; see Ta-
bles 3 and 4), one could argue that consistency effects,
even though significant, are not necessarily substantive.
There are two responses to this. First, the amount of vari-
ance accounted for is in line with other large-scale studies.
For example, in the Balota et al. (2004) monosyllabic mega-
study, consistency accounted for 2.1% of variance in
speeded pronunciation and 0.6% of variance in lexical deci-
sion. More crucially, the theoretical importance of consis-
tency cannot be entirely gauged by the magnitude of its
effect. For example, computational models of word recog-
nition (Coltheart et al., 2001; Plaut et al., 1996) have been
extremely influential in the literature, and yet model laten-
cies account for very modest amounts of item-level vari-
ance in human data. In simulations reported by Spieler
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and Balota (1997), the Coltheart et al. model accounted
for 6.9% of pronunciation variance while the Plaut et al.
model accounted for only 3.1% of pronunciation variance.
Functional form of word length
New et al. (2006) were the first to report the intriguing

quadratic U-shaped relationship between word length and
lexical decision latencies. This is theoretically important
because it suggests that there may be a preferred grain size
in word recognition that is conditioned by how word
length is distributed in the language. Specifically, readers
appear to develop an optimal perceptual span that is about
six to nine letters long, based on the most common length
of words they encounter. Indeed, the mean length of words
in the ELP is eight by type frequency and 7.66 by token fre-
quency (using log HAL frequency). Words that are approx-
imately the same length as this perceptual span appear to
be processed in a more efficient (potentially parallel) man-
ner. Words longer than the perceptual span are likely to en-
gage multiple fixations; hence, the longer the word, the
slower recognition should be. Finally, length may be nega-
tively correlated with RTs for short words because very
short words deviate more from the optimal span, leading
to long recognition times. There is also evidence that qua-
dratic length can be partially explained by orthographic
similarity effects (Yarkoni et al., 2008). Specifically, Ortho-
graphic Levenshtein distance scores are disproportionately
low for medium-length (i.e., 5–7 letters) words, because
there is a preponderance of medium-length words in the
language, hence shortening the orthographic distance from
a target word to other words in the same length range. In-
deed, Yarkoni et al. demonstrated that when Orthographic
Levenshtein distance is controlled for, the unique effect of
quadratic length decreases.

More importantly, the quadratic relationship indicates
that reports from earlier studies examining length effects
(see New et al., 2006, for a comprehensive review) are
potentially misleading, due to the fact that these studies
were examining words with a relatively small range of
lengths. The present analyses confirm and extend New
et al.’s findings by showing that the quadratic relationship
is present in both pronunciation and lexical decision per-
formance, even after a large number of correlated variables
were controlled for. Moreover, the relationship was stron-
ger in lexical decision than in pronunciation. This task ef-
fect could be due to the greater emphasis in the
pronunciation task on serial left-to-right sublexical pro-
cessing, which might attenuate the curvilinear trend.

Orthographic and phonological similarity
Traditionally, orthographic and phonological similarity

have been investigated with orthographic and phonologi-
cal N, respectively. As discussed in the Introduction, ortho-
graphic N effects have been somewhat contentious in the
literature. We found facilitatory effects of this variable in
both speeded pronunciation and lexical decision, and these
effects were also stronger for low-frequency words than
for high frequency words, consistent with Andrews
(1992). Collectively, these results suggest that the presence
of many orthographic neighbors help, rather than hurt,
l word recognition of multisyllabic words. Journal of Mem-
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word recognition performance, which is difficult to recon-
cile with the intuition that neighbors compete with each
other during lexical identification (see Andrews, 1997, for
a discussion of the theoretical importance of orthographic
neighborhood effects).

Turning to phonological N, effects were facilitatory in
speeded pronunciation, but unreliable in lexical decision.
In other words, the facilitatory effects of phonological N
in lexical decision performance, observed in factorial
experiments using a small set of monosyllabic stimuli
(Yates, 2005; Yates et al., 2004), do not generalize to per-
formance for a large database of multisyllabic words. Inter-
estingly, when we examined phonological N effects in
monosyllabic words (see Tables 3 and 4), we observed reli-
able inhibitory effects in both speeded pronunciation and
lexical decision. This unexpected finding indicates that
for monosyllabic words, the presence of many phonologi-
cal neighbors hurts, rather than helps, word recognition
performance. What is driving the discrepancy between
the present results and the work by Yates and colleagues?
Possibly, not all phonological neighbors facilitate recogni-
tion, particularly when one considers shorter monosyllabic
words. Interestingly, Grainger, Muneaux, Farioli, and Zie-
gler (2005) reported that in French lexical decision perfor-
mance, phonological neighbors in dense orthographic
neighborhoods were facilitatory, but phonological neigh-
bors in sparse orthographic neighborhoods were inhibitory.
Hence, it is possible that Yates’ stimuli were loaded with
words from dense orthographic neighborhoods, whereas
most words in our large-scale analyses could have been
from sparse orthographic neighborhoods. We tested this
by examining the orthographic N � phonological N inter-
action (after controlling for onsets and lexical variables)
in monosyllabic speeded pronunciation and lexical deci-
sion. Unfortunately, the interaction was not significant in
speeded pronunciation, and although it was reliable in lex-
ical decision (p = .037), phonological neighbors in dense
orthographic neighborhoods were more inhibitory than
phonological neighbors in sparse orthographic neighbors.

Alternatively, perhaps only words which are both ortho-
graphic and phonological neighbors speed up pronuncia-
tion and lexical decision performance (cf. Adelman &
Brown, 2007; Peereman & Content, 1997). The other pho-
nological neighbors may actually have no or possibly dele-
terious effects on performance, as demonstrated by the
illustration below. For example, consider the orthographic
(cog, dig, doc, doe, don, dot, dug, fog, hog, jog, log) and pho-
nological (daub, dawn, dig, doff, door, Doug, dug, hog, log)
neighbors of the word dog. As one can see, a number of
neighbors (e.g., hog, log) possess similar spellings and pro-
nunciations as the target word, dog. Such neighbors short-
en pronunciation latencies because they activate
phonology consistent with the target item’s. In contrast,
some phonological neighbors (e.g., daub, dawn, and doff)
may share phonology with dog but relatively little overlap
in orthography. In fact, some of these neighbors (e.g., daub)
are feedback-inconsistent with the target word. That is, dog
and daub share the same sound vowel, but different spell-
ing vowels (-o vs. -au). The presence of feedback-inconsis-
tent neighbors may actually slow down the recognition of
dog. We explored this in our monosyllabic dataset by
Please cite this article in press as: Yap, M. J., & Balota, D. A. Visua
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replacing phonological N with phonographic neighborhood
size in Step 3 of our regression analyses (Adelman &
Brown); phonographic neighborhood size is the number
of phonological neighbors that are also orthographic
neighbors. When we did this, the effects of phonographic
neighborhood size were facilitatory in both speeded pro-
nunciation (b = �.197, p < .001) and lexical decision
(b = �.063, p = .016). However, orthographic N effects were
no longer reliable in both tasks. Interestingly, this is pre-
cisely the same pattern obtained by Ziegler and Perry
(1998), who contrasted orthographic N against body N
(i.e., the number of neighbors sharing the target’s ortho-
graphic rime); a body neighbor might be considered a spe-
cial kind of phonographic neighbor. Collectively, these
results suggest that orthographic and phonological N
may not be the most ideal measures of orthographic and
phonological similarity, respectively.

To summarize, for monosyllabic words, it is possible
that only a subset of orthographic and phonological neigh-
bors facilitate target processing; the other neighbors either
exert null or inhibitory effects. When orthographic N is en-
tered as a predictor, its overall effect is facilitatory because
there are typically more facilitating than inhibiting ortho-
graphic neighbors for a word. When phonological N alone
is entered as a predictor, its overall effect is inhibitory be-
cause there are typically more inhibiting than facilitating
phonological neighbors. It is possible that the Yates studies
yielded facilitatory effects of phonological N because the
selected stimuli featured phonological neighborhoods
which were dominated by phonographic neighbors. Criti-
cally, when orthographic and phonographic neighborhood
size are entered together, phonographic neighborhood size
is facilitatory while orthographic N is inhibitory. This sug-
gests that phonographic neighborhood size is accounting
for all the variance explained by the facilitating ortho-
graphic neighbors, leaving the remaining orthographic
neighbors to exert an inhibitory effect. Heuristically, one
might think of phonographic neighborhood size as an opti-
mized measure of orthographic and phonological N. To
summarize, it appears that the phonological N measure
could be somewhat more complex than originally concep-
tualized by Yates (2005). Only a subset of phonological
neighbors (i.e., those which are orthographic neighbors as
well) may actually be useful for helping the target word
converge on its appropriate pronunciations; the other
neighbors could either slow down or have no effect on tar-
get processing.

This study also explored novel measures of ortho-
graphic and phonological similarity that were based on
Levenshtein distance (Yarkoni et al., 2008). Unlike stan-
dard measures of orthographic and phonological N, these
distance-based measures are not only applicable to words
of all lengths, but more importantly, were able to account
for a substantial proportion of unique variance above and
beyond the traditional measures. In general, the effects of
these variables indicated that visually and phonologically
confusable words were recognized faster, a counterintui-
tive finding that is again markedly discrepant with
straightforward competitive lexical selection processes. In-
stead, facilitatory distance effects may reflect the process-
ing characteristics of the sublexical phonological assembly
l word recognition of multisyllabic words. Journal of Mem-
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process, whereby words which have many words that are
visually similar are recognized faster because they contain
more common spelling-sound correspondences (Andrews,
1997). This argument is of course consistent with the find-
ing that the effects of neighbors are stronger for low-fre-
quency than for high frequency words (Andrews, 1989,
1992); low-frequency words are more likely to be influ-
enced by sublexical processes.

Semantic effects
Semantic effects have been relatively neglected both in

the empirical literature and in models of isolated word rec-
ognition. This study demonstrates that even after control-
ling for virtually all major lexical variables, one observes
semantic effects in pronunciation and lexical decision
latencies. These effects were stronger in lexical decision
performance, which is consistent with the contribution of
semantics to word–non-word discrimination. These results
replicate Balota et al.’s (2004) study, and are again consis-
tent with an interactive, cascadic word recognition system
where semantic-level information exerts top-down influ-
ences on lower-level lexical representations relatively
early in the processing stream (Balota, 1990). Of course,
the semantic variables used in this study can only crudely
approximate the array of semantic measures (e.g., image-
ability, concreteness, relatedness of meanings) that have
been used to study semantic processing, and it will useful
to revisit this issue when better semantic measures be-
come available for the present corpus.

Relating effects to extant models of multisyllabic word
recognition

We have described a fairly long list of targeted phenom-
ena that a model of multisyllabic word recognition needs
to accommodate. While our primary objective is to charac-
terize empirical effects in multisyllabic words, it is also use-
ful to briefly consider how well extant multisyllabic
computational models of word recognition handle these
effects. Obviously, a detailed evaluation of models is not
viable, as space constraints preclude an exhaustive consid-
eration of the underlying mechanisms and processes in
each model. Nevertheless, it will be instructive to consider
how well models can reproduce the item-level effects in
our dataset.

Unfortunately, the answer to this question is not that
straightforward, because the investigation of multisyllabic
words is underrepresented in both empirical studies and
model development. For example, one of the better known
computational models of multisyllabic word recognition
was developed by Ans, Carbonnel, and Valdois (1998) for
French. The model is sensitive to statistical regularities in
the language, and contains two procedures for deriving
speech from print, a default global mode that operates in
parallel and uses knowledge about whole words, and a sec-
ondary analytic mode that operates serially, typically sylla-
ble-by-syllable. Global processing is always engaged first,
but when this fails, items will be processed by the analytic
procedure. While a full description of the workings of this
model is well outside the scope of this paper, it is interest-
ing that the model contains representational units corre-
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sponding to the syllable, an assumption which was
motivated by the functional importance of the syllable in
studies of spoken word processing. Nevertheless, however
intriguing the Ans et al. (1998) model is, its architecture is
based on French, which has its own idiosyncratic spelling-
sound mappings. At this point, there is only one published
implemented model that handles the word recognition of
English multisyllabic words, the junction model of lexical
processing (Kello, 2006).

Junction model of word recognition
The junction model departs significantly from DRC and

connectionist frameworks by its use of a shared-route
architecture (see Fig. 7), whereby orthography makes con-
tact with phonology and semantics via the same represen-
tations. The outlined portion of Fig. 7 reflects the mapping
between sound and meaning representations, which cap-
tures the processes and representations involved in spoken
language acquisition and processing (i.e., converting
speech to meaning). Hence, this is a single-pathway archi-
tecture, which contrasts with the DRC model, where
orthography contacts phonology via either a lexical (ad-
dressed phonology) or sublexical (assembled phonology)
pathway, and the connectionist model, where orthography
contacts phonology either directly (Orthography ? Pho-
nology) or indirectly (Orthography ? Semantics ? Pho-
nology). In general, the junction model is able to handle
multisyllabic words because it can learn how to encode
and decode variable-length sequences, using simple recur-
rent networks (SRNs) which learn the transitional proba-
bilities of sequences. When two SRNs are joined, they
form a single sequence encoder (see Fig. 8) that can con-
vert variable-length sequences into fixed-width represen-
tations and vice versa (see Sibley, Kello, Plaut, & Elman,
2006, for a more detailed description). Briefly, the input
SRN encoder is trained to convert an input of any length
into a fixed-width representation, and the output SRN de-
coder is trained to recover the original input from the
fixed-width representation.

This aspect of the model is critical because multisyllabic
words vary greatly with respect to their number of letters
and phonemes, and it is difficult to align the spelling and
pronunciation of a multisyllabic word in a principled man-
ner so as to determine their overlap (Sibley & Kello, 2006).
The junction model solves the alignment problem by
reducing word forms of variable length to a common
l word recognition of multisyllabic words. Journal of Mem-
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fixed-width base. Orthographic and phonological sequence
encoders are first used to learn the orthographic and pho-
nological representations of 45,263 words, respectively,
and the textual co-occurrence statistics from the COALS
database of word co-occurrences (Rohde, Gonnerman, &
Plaut, 2008) were used to generate semantic codes for each
word. After training, each of the 45,263 words was associ-
ated with unique 400-bit orthographic, phonological, and
semantic representations. These representations were then
bound together by a set of mediating representations to
form the fully implemented junction model (see Fig. 9).
Specifically, each of the 45,263 localist lexical nodes was
bidirectionally connected to 1200 sigmoidal processing
units, comprised of 400 orthographic, 400 phonological,
and 400 semantic units. The functions that govern the acti-
vation dynamics of the system, and the resultant probabil-
ity density function of model RTs, are outside the scope of
this paper but are available in Kello (2006). It is interesting
to note however, that the model produces positively
skewed RT distributions, consistent with human
participants.

Testing the junction model
When Kello (2006) tested the model, he reported that it

could account for more variance in speeded pronunciation
response times than either the dual route (Coltheart et al.,
2001) or connectionist (Plaut et al., 1996) computational
models. However, is the model able to reproduce the
item-level effects of variables described here? For example,
45,263  
Lexical 
Nodes 

Orthographic 
Codes 

Phonological 
Codes 

Semantic 
Codes 

Fig. 9. The implemented junction model of lexical processing. From Kello,
2006 (p. 59). Copyright 2006 by Psychology Press Ltd. Reproduced with
permission.
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will rank-transformed frequency predict junction model
performance better than log-transformed frequency? For-
tunately, the latencies produced by the junction model
are available (C. T. Kello, personal communication, Decem-
ber 16, 2006), making it possible to address these issues. In
the next sections, two sets of analyses are described. In the
first set of analyses, junction model latencies for the mul-
tisyllabic words studied in this study were regressed
against log-transformed and rank-transformed frequency
to assess which function accounts for more variance. Using
hierarchical regression analyses, the influence of the full
set of predictors used in this study on junction model
latencies were then examined.

Rank or log frequency?
As discussed, recent models of lexical access are sophis-

ticated enough to make predictions about the functional
form of the frequency effect. The analyses reported by
Yap (2007) indicated that the rank transformation of word
frequency accounts for more variance than the more com-
monly used log transformation, consistent with predic-
tions from Murray and Forster (2004, but see Adelman &
Brown, 2008, for an alternative account, and Murray & For-
ster, 2008, for a reply). To test this, junction model laten-
cies were correlated with log composite frequency and
rank composite frequency. There were a total of 4517
monomorphemic multisyllabic words that had junction
model latencies. Model RTs were more strongly correlated
with rank composite frequency (r = �.846, p < .001) than
with log composite frequency (r = �.818, p < .001), which
is compatible with the human data. It is unclear what is
responsible for the superiority of the rank transformation,
since there is obviously no serial search mechanism in the
junction model. Hence, the power of the rank function also
appears to be quite consistent with other theoretical per-
spectives and is not particularly tied to a serial search
mechanism, as Murray and Forster (2004) initially argued.
Item-level effects and the junction model
In this section, using the same methodology as Kello

(2006), the junction model RTs were first used to predict
the pronunciation and lexical decision residuals (after on-
sets and length were partialled out) for the monomorphe-
mic words targeted in this study. This analysis included the
4517 monomorphemic multisyllabic words with junction
model RTs and indicates how well the model can predict
performance at the individual item-level (Spieler & Balota,
1997). The model accounted for 30.0% of the variance in
pronunciation residuals and 38.4% of the variance in lexical
decision residuals. These estimates are in fact higher than
the estimates reported by Kello (2006) when he examined
his full dataset of 30,894 words. Hierarchical regression
analyses were conducted with junction model RTs as the
dependent variable (see Table 8). The same steps used in
the hierarchical analyses were included here to ensure
comparability with the earlier analyses. A total of 4517
words were included in the first seven steps of the regres-
sion model. Note that 4343 words were included in the fi-
nal step since not all 4517 words are represented in the
two semantic measures. For comparison purposes, regres-
l word recognition of multisyllabic words. Journal of Mem-
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sion coefficients based on human data for the same items
are also presented.

First, the phonological onsets accounted for virtually no
variance in junction model RTs, confirming that these vari-
ables most likely reflect voice key characteristics. Second,
the standard lexical variables accounted for substantially
more variance in model RTs (72.8%) than in human perfor-
mance (53.6% in speeded pronunciation and 58.8% in lexi-
cal decision). Third, the overall fit between model and
human behavior was relatively good. The effects of number
of syllables, word frequency, orthographic N, and the
Levenshtein distance measures were reliable and in the
same direction across model and human data. The model
also did not produce significant effects of letter length,
and could not correctly simulate phonological consistency
or semantic effects. To summarize, the present instantia-
tion of the junction model accounted for an impressive
Table 8
Standardized RT and accuracy regression coefficients of the item-level regression an
pronunciation task; LDT = lexical decision task) for the same items are also presente
with asterisks.

Predictor variable Monosyllabic words (n = 3201)

Model SPT LDT

Surface variables (onsets)
R-square .015*** .307*** .004*

Surface variables (stress)
R-square NA NA NA

Standard lexical variables
Number of syllables NA NA NA
Length (number of letters) .041*** .121*** �.079***

Rank composite frequency �.887*** �.386*** �.744***

Orthographic N �.023* �.204*** �.106***

Phonological N �.001 .154*** .055**

R-square .814*** .526*** .549***

Quadratic length
Quadratic length �.018 .589*** .537***

R-square .814 .534*** .555***

Distance variables
L orthographic distance .023 �.039 .017
L phonological distance .020 .230*** .086***

LOD Neighborhood frequency .002 .122*** .122***

R-square .814 .558*** .563***

Syllable 1 consistency variables
Feedforward onset consistency .018� �.115*** �.025�

Feedforward rime consistency .012 �.060*** �.027*

Feedback onset consistency �.013 �.070*** .009
Feedback rime consistency �.002 �.101*** �.006
R-square .814 .589*** .564�

Higher-order consistency variables
Distance consistency �.055* �.099* �.075�

Composite FF onset consistency NA NA NA
Composite FF rime consistency NA NA NA
Composite FB onset consistency NA NA NA
Composite FB rime consistency NA NA NA
R-square .815* .590* .564�

Semantic variables
Local semantic neighborhood size .049*** .010 .010
WordNet number of senses �.001 �.064*** �.117***

* p < .05.
** p < .01.
*** p < .001.
� p < .10.
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proportion of pronunciation and lexical decision variance
in the ELP, compared to previous attempts by computa-
tional models to accommodate monosyllabic word recog-
nition (see Spieler & Balota, 1997; Balota & Spieler, 1998,
for a discussion). Nevertheless, despite its impressive per-
formance, it is clear that there were some interesting dis-
crepancies between human and model performance. For
example, word frequency was accounting for too much
variance in junction model RTs, compared to human par-
ticipants. This explains why the targeted variables could
account for 73.4% of the variance in the model. Further-
more, the model was relatively insensitive to letter length
and number of syllables. Of course, this is consistent with
Kello’s (2006) claim that the model should not be held
accountable for length effects. More intriguingly, effects
of phonological consistency were marginal, indicating that
statistical regularities in spelling-to-sound and sound-to-
alyses for junction model performance. Human performance (SPT = speeded
d for purposes of comparison. The p-value for each R2 change is represented

Multisyllabic words (n = 4517) All words (n = 7718)

Model SPT LDT Model SPT LDT

.009*** .044*** .000 .004*** .066*** .008***

.025*** .116*** .051*** .034*** .179*** .079***

.040*** .230*** .167*** .014 .258*** .203***

.006 .140*** .092*** .041*** .205*** .076***

�.826*** �.492*** �.660*** �.850*** �.430*** �.664***

�.073*** �.070*** �.054*** �.026** �.074*** �.031*

�.011 �.048*** �.003 .013 .094*** .066***

.728*** .536*** .588*** .764*** .586*** .626***

.054 .431*** .508*** .136*** .564*** .639***

.728 .540*** .593*** .765*** .594*** .637***

.121*** .125*** .131*** .152*** .119*** .122***

.047** .267*** .192*** .066*** .342*** .200***

.028* .130*** .099*** .037*** .162*** .127***

.733*** .584*** .620*** .771*** .636*** .657***

�.007 �.065*** �.002 .003 �.064*** �.010
.000 �.030** .014 .014� �.031*** �.006
�.003 �.017 �.007 �.004 �.019* �.001
�.002 �.059*** �.030** �.002 �.062*** �.017*

.733 .593*** .621* .771 .645*** .657�

�.089*** �.168*** �.083** �.034* �.055** �.066**

.004 �.038*** �.008 .011 �.032** �.010

.025* �.018 �.004 .024* �.028� �.006
�.006 .045*** .057*** .015� .065*** .050***

�.027* �.094*** �.023� �.019� �.080*** �.015
.734*** .604*** .624*** .772** .649*** .658***

�.017 �.028� �.071*** .012 �.024* �.029**

.030** �.025* �.059*** .023*** �.011 �.080***

l word recognition of multisyllabic words. Journal of Mem-



Fig. 11. The new connectionist dual process (CDP+) model. O = onset;
V = vowel; C = coda; TLA = two-layer assembly; IA = interactive activa-
tion; L = letter; F = feature. From Perry et al. (2007) p. 280. Copyright 2007
by APA. Reproduced with permission.
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spelling correspondences are not being encoded. Finally,
the model could not capture semantic effects. These could
be potential areas of development in future iterations of
the junction model.

The CDP++ disyllabic model

Although the junction model is technically the only
published computational model that accommodates the
reading aloud of English multisyllabic words, the monosyl-
labic connectionist dual-process (CDP+) model (Perry et al.,
2007) has been recently extended to handle both monosyl-
labic and disyllabic words (Perry, Ziegler, & Zorzi, 2008),
making it an exciting alternative to the junction model.
The CDP+ model is an extension to the original connection-
ist dual process (CDP) model developed by Zorzi, Hough-
ton, and Butterworth (1998); see Fig. 10), which has two
distinct connectionist pathways that jointly support the
conversion of spelling-to-sound. The monosyllabic CDP+
model (Perry et al., 2007; see Fig. 11) replaces the original
retrieved phonology pathway with a fully implemented
lexical pathway that is closely based on the interactive
activation model (McClelland & Rumelhart, 1981), and
the sublexical pathway now uses graphemes, rather than
single letters, as orthographic input, a feature that has been
shown to dramatically improve non-word reading accu-
racy (cf. Plaut et al., 1996). Finally, serial processing is
hardwired into the sublexical pathway because graphemes
in letter strings are individually processed in a left-to-right
manner. Broadly speaking, the CDP+ model is an amalgam-
ation of earlier computational models, effectively blending
their strengths while addressing their weaknesses. For
example, the DRC model (Coltheart et al., 2001) lacks the
ability to learn and has difficulty capturing graded phono-
logical consistency effects. Likewise, connectionist models
(Plaut et al., 1996) are challenged by serial effects in read-
ing (see Rastle & Coltheart, 2006, for more discussion).
Simulations of the CDP+ model indicated that it could not
only successfully reproduce the benchmark effects identi-
fied by Coltheart et al. (2001), but that it was also able to
account for more item-level variance in databases than
all earlier models. Specifically, the DRC, CDP, and connec-
Fig. 10. The connectionist dual process (CDP) model. From Perry et al.
(2007) p. 276. Copyright 2007 by APA. Reproduced with permission.
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tionist models could only account for between 3% and 7%
of variance in the Spieler and Balota (1997) database, but
the CDP+ model was able to account for over 17% of the
variance.

It is fortuitous that Perry and colleagues have recently
been working on a version of the CDP+ model that handles
disyllabic words. Broadly speaking, the iteration of the
disyllabic model being tested is architecturally very similar
to its monosyllabic predecessor except that the grapheme
buffer has been extended to code for disyllabic words (J.
C. Ziegler, personal communication, December 28, 2007).
Although this work is still in progress, the model’s pre-
dicted latencies are available, allowing us to test the disyl-
labic CDP++ model against the present data set. As the
model is still under development, it is important to note
that some aspects, such as its parameters, may change,
although we have been informed that the present instanti-
ation of the model is quite close to the final version (J. C.
Ziegler, personal communication, December 26, 2007).

Testing the disyllabic CDP++ model
The model was tested against the pronunciation and

lexical decision latencies of 3394 disyllabic words for
which model latencies were available. The model was able
to account for 31.4% of the variance in pronunciation re-
sponse times and 35.9% of the variance in lexical decision
response times. Interestingly, even though the model is de-
signed to carry out speeded pronunciation, not lexical deci-
sion, it nevertheless accounted for a remarkable amount of
variance in lexical decision performance. These estimates
are considerably higher than the R-squares (17.28–
21.56% for speeded pronunciation performance) reported
by Perry et al. (2007) when they examined monosyllabic
words. CDP++ model RTs were also correlated with log
and rank composite frequency, to determine which trans-
formation of frequency had more predictive power. In con-
trast to the junction model and the behavioral data, log
frequency (45.4%) accounted for more variance in the
CDP++ model than rank frequency (42.9%).
l word recognition of multisyllabic words. Journal of Mem-
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Hierarchical regression analyses were next conducted
with CDP++ model RTs as the dependent variable (see Ta-
ble 9). Like the junction model, the phonological onsets ac-
counted for virtually no variance in model RTs, which is
reassuring. In addition, the target variables accounted for
about the same amount of variance in model RTs (52.7%)
as in human performance (54.7% in speeded pronunciation
and 58.8% in lexical decision). The overall fit between mod-
el and human behavior was very good. The effects of letter
length, word frequency, orthographic N, phonological N,
Levenshtein phonological distance, LOD neighborhood fre-
quency, syllable 1 feedback consistency, composite consis-
tency, and semantic measures were reliable and in the
same direction across model and human data. Number of
syllables effects could not be tested with the 3394 disyl-
labic words but were reliably inhibitory in the full set of
6694 mono- and disyllabic words. However, unique effects
Table 9
Standardized RT and accuracy regression coefficients of the item-level regression a
pronunciation task; LDT = lexical decision task) for the same items are also presente
with asterisks.

Predictor variable Monosyllabic words (n = 3300) D

Model SPT LDT M

Surface variables (onsets)
R-square .018*** .298*** .005**

Surface variables (stress)
R-square NA NA NA

Standard lexical variables
Number of syllables NA NA NA N
Length (number of letters) .149*** .120*** �.090***

Rank composite frequency �.601*** �.398*** �.740***

Orthographic N �.017 �.202*** �.110***

Phonological N �.041* .147*** .049**

R-square .451*** .529*** .546***

Quadratic length
Quadratic length �.052 .642*** .541***

R-square .451 .537*** .553***

Distance variables
L orthographic distance .004 �.006 .013
L phonological distance .226*** .207*** .093***

LOD neighborhood frequency .021 .121*** .119***

R-square .470*** .559*** .561***

Syllable 1 consistency variables
Feedforward onset consistency �.027� �.093*** �.031*

Feedforward rime consistency �.120*** �.058*** �.022�

Feedback onset consistency �.005 �.086*** .000
Feedback rime consistency �.001 �.097*** -.014
R-square .482*** .588*** .562*

Higher-order consistency variables
Distance consistency �.190*** �.133*** �.056
Composite FF onset consistency NA NA NA
Composite FF rime consistency NA NA NA
Composite FB onset consistency NA NA NA
Composite FB rime consistency NA NA NA
R-square .485*** .589*** .562

Semantic variables
Local semantic neighborhood size .041* .007 .018
WordNet number of senses �.127*** �.066*** �.121***

* p < .05.
** p < .01.
*** p < .001.
� p < .10.
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of Levenshtein orthographic distance were not observed,
nor did the model produce reliable effects of syllable 1
feedforward consistency. It is interesting that the CDP++
model correctly captured effects of number of syllables
and phonological consistency. Although syllables are not
explicitly represented in the model as units of representa-
tion, the grapheme buffer uses linguistic principles (such
as the maximum onset principle) to determine where syl-
labic boundaries should lie. Disyllabic words are processed
more slowly because the model initially attempts to
(incorrectly) parse such words as monosyllables, and it
takes time to suppress the spurious activation and to move
graphemes into their correct syllabic positions (C. Perry,
personal communication, December 28, 2007).

In summary, it appears that the present instantiation of
the disyllabic CDP++ model is able to handle many impor-
tant aspects in our dataset, with some limitations. The
nalyses for CDP++ model performance. Human performance (SPT = speeded
d for purposes of comparison. The p-value for each R2 change is represented

isyllabic words (n = 3394) All words (n = 6694)

odel SPT LDT Model SPT LDT

.019*** .103*** .007*** .008*** .118*** .004***

.024*** .115*** .009** .046*** .158*** .020***

A NA NA .159*** .123*** .109***

.038** .082*** .014 .113*** .144*** �.012
�.624*** �.516*** �.715*** �.563*** �.454*** �.715***

�.030� �.114*** �.092*** �.031* �.133*** �.075***

�.179*** �.060*** �.007 �.091*** .073*** .042**

.479*** .440*** .537*** .571*** .513*** .581***

.521*** .871*** .671*** .067 .685*** .683***

.483*** .451*** .544*** .571 .524*** .591***

�.006 .085*** .113*** �.014 .077*** .101***

.246*** .283*** .173*** .317*** .367*** .187***

.071*** .159*** .109*** .068*** .181*** .136***

.518*** .525*** .581*** .600*** .583*** .615***

�.011 �.070*** �.023� �.018� �.067*** �.025**

�.004 �.036** .017 �.060*** �.057*** �.003
�.050** �.036* �.006 �.024* �.041*** �.002
�.034** �.050*** �.014 �.025** �.058*** �.009

.521*** .535*** .581 .604*** .596*** .615*

�.040 �.167*** �.108** �.131*** �.070** �.060*

�.075*** �.032* .003 �.065*** �.022� .007
�.053** �.050** �.012 �.099*** �.043* �.010

.057*** .060*** .042** .084*** .065*** .038**

�.042* �.113*** �.045** �.025 �.116*** �.048**

.527*** .547*** .584*** .610*** .601*** .616***

�.321*** �.037� �.086*** �.081*** �.028** �.026*

�.101*** �.047*** �.060*** �.113*** �.035*** �.089***

l word recognition of multisyllabic words. Journal of Mem-
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model mimicked many behavioral effects correctly, but it
did not show the rank frequency advantage, nor did it pro-
duce effects of Levenshtein orthographic distance and syl-
lable 1 feedforward consistency. The significant feedback
consistency and semantic effects shown by the model are
intriguing and puzzling, given that the CDP++ model does
not implement sublexical feedback from phonology to
orthography and lacks semantic representations. It is pos-
sible that these model effects are spuriously driven by
uncontrolled covariates, or from suppressor and interac-
tive effects in a set of highly intercorrelated variables.
Whether these factors are similarly responsible for the hu-
man effects is a question that merits further investigation.
More importantly, the assumption that every significant ef-
fect necessarily implicates a corresponding representation
and process may be too simplistic, and should be tempered
by the abovementioned considerations.

Limitations of present study and future directions

Although this study has examined the influence of a
large number of measures on visual word recognition per-
formance, a number of questions remain unanswered. For
example, although large, the number of orthographic, pho-
nological, and semantic variables is obviously not exhaus-
tive. Specifically, morphologically-defined measures (e.g.,
part of speech, number of complex words in which a target
word occurs as a constituent) have also been shown to play
a prominent role in visual word recognition (Baayen et al.,
2006), and it is important to understand how morphologi-
cal effects operate in multisyllabic word recognition. A bet-
ter understanding of stress assignment processes also
remains an important target for future research.

Second, the analyses described here generally empha-
size the linear effects of variables. However, psycholinguis-
tic variables are not always linearly related to RTs. For
example, both log frequency and length produced curvilin-
ear effects. It is important to identify other variables that
may be producing such non-linear relationships with RTs,
and how these non-linear relationships interact with other
variables.

Third, since the primary objective of this study was to
identify benchmarks that could be used to constrain mul-
tisyllabic word recognition models, the empirical aspects
of the data have been emphasized. Of course, the theoret-
ical ramifications were also discussed to a lesser or great-
er extent throughout, but given the theoretical
development of various models regarding the targeted
multisyllabic variables, further speculation is premature
at this point. However, some questions clearly merit more
investigation. For example, why does rank-transformed
frequency have so much predictive power, and what
implications does this have for models of lexical access
and more generally learning? How can input coding
mechanisms be constrained by the surprisingly robust
Levenshtein distance effects, where words which are
more orthographically and phonologically confusable are
easier to recognize? Why does the CDP++ model produce
semantic and feedback phonology effects, even though
the mechanisms hypothesized to underlie these effects
are not implemented?
Please cite this article in press as: Yap, M. J., & Balota, D. A. Visua
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Finally, although this paper has been represented as a
multisyllabic word recognition megastudy, the reality is
that monomorphemic words form only a modest quarter
of the 40,481 words in the ELP. The extent to which the ef-
fects reported in this study generalize to these multimor-
phemic mono- and multisyllabic words remains an open
empirical question, and is clearly an important next step
for the field.

Concluding remarks

The present study examined the influence of various
variables on the pronunciation and lexical decision laten-
cies of 6115 monomorphemic multisyllabic words. The re-
sults of the regression analyses indicated that the
constellation of parameters accounted for a remarkable
61.2% and 61.6% of the variance in pronunciation and lex-
ical decision performance, respectively, which is clearly
considerably higher than the estimates reported in previ-
ous studies. The present study has broken ground on two
additional fronts. First, it is currently the largest mega-
study of multisyllabic word recognition utilizing a compre-
hensive array of traditional and novel orthographic,
phonological, and semantic predictors. There are other
multisyllabic word recognition megastudies in the litera-
ture but they either studied fewer words (Chateau & Jared,
2003) or controlled for a relatively small number of lexical
variables (New et al., 2006). Second, the item-level regres-
sion analyses accounted for over 60% of the variance in
both pronunciation and lexical decision latencies, substan-
tially more than any previous word recognition mega-
study. Hopefully, the results reported here will provide
useful constraints for emerging models of multisyllabic vi-
sual word recognition. This is timely as researchers (e.g.,
Kello, 2006; Perry et al., 2008) have begun to develop mul-
tisyllabic word recognition models. It is important that
these models capture not only the item-level variance
associated with human pronunciation and lexical decision
latencies, but also reproduce the constellation of effects
shown by human participants. Our initial examination of
such models indicate impressive power, with, as expected,
some limitations that should serve as targets in future
model development.
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