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Abstract
Previous studies on visual word recognition of compound words have provided evidence for the influence of lexical properties
(e.g., length, frequency) and semantic transparency (the degree of relatedness in meaning between a compound word and its
constituents) in morphological processing (e.g., to what extent is doorbell influenced by door and bell?). However, a number of
questions in this domain, which are difficult to address with the available methodological resources, are still unresolved. We
collected semantic transparency scores for 2,861 compound words at the constituent level (i.e., how strongly the overall meaning
of a compound word is related to that of each constituent) and analyzed their effects on speeded pronunciation and lexical
decision performance for the compound words using the English Lexicon Project (http://elexicon.wustl.edu) data. The results
from both tasks indicated that our human-judged semantic transparency ratings for both the first and second constituents play a
significant role in compound word processing. Moreover, additional analyses indicated that the human-judged semantic trans-
parency scores at the constituent level accounted for more variance in compound word recognition performance than did either
whole-word semantic transparency scores or corpus-based semantic distance scores.
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Compounding is the most universal means of forming mor-
phologically complex words across languages (Dressler,
2006), and typically two (or more) lexemes are involved
(e.g., door and bell for doorbell). Thus, the meaning of a
compound word may be related to the meaning of each lex-
eme for transparent compounds such as doorbell, but not for
opaque compounds such as honeymoon. Previous studies on
visual word recognition of compound words have provided
evidence for the role of lexical properties such as frequency
and length. For example, compound words with high-
frequency lexemes are recognized faster than those with
low-frequency lexemes (Andrews, 1986; Duñabeitia, Perea,
& Carreiras, 2007; Juhasz, Starr, Inhoff, & Placke, 2003),
and longer compound words elicited longer gaze durations
in eye-tracking studies (e.g., Juhasz, 2008). In addition, mor-
phological family size, or the number of morphologically

related words that share a given stem, is another facilitative
factor that affects visual word recognition of compound words
(Baayen, Lieber, & Schreuder, 1997). However, the findings
regarding semantic transparency have been mixed (Fiorentino
& Fund-Reznicek, 2009; Frisson, Niswander-Klement, &
Pollatsek, 2008; Jarema, Busson, Nikolova, Tsapkini, &
Libben, 1999; Juhasz, 2007; Libben, Gibson, Yoon, &
Sandra, 2003; Monsell, 1985; Pollatsek & Hyönä, 2005;
Sandra, 1990; Zwitserlood, 1994). In the present study, we
focused on this aspect of compound word processing.

Semantic transparency in compound words

Semantic transparency refers to the extent to which two con-
stituents in a compound word contribute to the meaning of the
compound (Juhasz, 2018). Among morphologically complex
words, compound words are optimal candidates for examin-
ing the role of semantic transparency, because a compound
word typically consists of two independent lexical items that
vary in semantic transparency. Since the meaning of the com-
pound may or may not be determined by the meanings of the
two constituents, the effect of semantic transparency can be
used to reveal how eachmorpheme is processed and the extent
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to which a compound word undergoes morphological decom-
position during the word recognition process. For example, if
semantically transparent compound words (e.g., doorbell) are
recognized faster than opaque compound words (e.g.,
deadline) in lexical decision (i.e., classifying letter strings as
either words or nonwords), one could infer that the semantic
relatedness of the compound word to its constituents has an
influence on its recognition.

Early studies using different methodologies and tasks have
yielded mixed results regarding the role of semantic transpar-
ency in compound word recognition. In semantic-priming ex-
periments, Sandra (1990) found that only fully transparent
compounds (e.g., milkman), but not opaque compounds
(e.g., butterfly), were significantly primed by words semanti-
cally related to either lexeme (e.g.,woman formilkman, bread
for butterfly). Zwitserlood (1994) further revealed that this
priming effect could be extended to partially transparent com-
pounds (such as jailbird), in which both constituents were
primed by their related compound word.

Other studies have examined the role of semantic transpar-
ency in compound processing using either primed (Fiorentino
& Fund-Reznicek, 2009; Jarema et al., 1999; Shoolman &
Andrews, 2003) or unprimed (e.g., Libben et al., 2003) lexical
decision tasks. Libben et al. demonstrated that compound
words with a transparent second constituent (i.e., transpar-
ent–transparent compounds such as bedroom or opaque–
transparent compounds such as strawberry) elicited faster re-
action times in lexical decision than did those with an opaque
second constituent (i.e., transparent–opaque compounds such
as jailbird or opaque–opaque compounds such as
honeymoon). These findings were interpreted as a headedness
effect: English is a right-headed language (see Jarema et al.,
1999, for a discussion). However, this headedness effect was
not observed in masked-priming experiments. Both transpar-
ent (e.g., teacup) and opaque (e.g., honeymoon) compound
words as primes elicited faster latencies for their constituent
targets, regardless of whether the target was the head of the
compound (cup or moon) or not (tea or honey), than did un-
related primes (Fiorentino & Fund-Reznicek, 2009), suggest-
ing that morphological decomposition is robust regardless of
constituent word position. In addition, both the first and sec-
ond constituents also primed target compounds regardless of
semantic transparency (Shoolman &Andrews, 2003). In sum-
mary, the role of each constituent in the recognition of com-
pound words is not yet fully understood.

Several eye-tracking studies have also provided inconsis-
tent results regarding the role of semantic transparency.
Pollatsek and Hyönä (2005) did not find an effect of semantic
transparency on gaze durations for Finnish compound words.
Instead, they found only a first-constituent frequency effect
for both transparent and opaque compounds. This null effect
of semantic transparency was reexamined using English com-
pound words by Juhasz (2007, 2018), who found a semantic

effect on gaze durations for English compound words in a by-
subject analysis, but not in a by-item analysis (Juhasz, 2007),
and no significant effect of semantic transparency on fixation
duration measures (Juhasz, 2018). Frisson et al. (2008) found
a significant effect of semantic transparency only when a
space was inserted between the constituents, suggesting that
compound words are not automatically decomposed into their
constituents during visual analysis (see also Ji, Gagné, &
Spalding, 2011).

In sum, semantic transparency is a critical factor for under-
standing whether morpheme-based processing in compound
words occurs, and if so, how each constituent’s semantic
transparency contributes to the recognition of the full com-
pound word. However, our understanding of the role of se-
mantic transparency is based largely on evidence across stud-
ies with small numbers of items and on factorial designs in
which semantic transparency is typically treated as a categor-
ical variable. Additionally, the extent to which the position of
a constituent in a compound word influences morphological
decomposition remains an open question. In the present study,
we examined the role of the semantic transparency of com-
pound words as a continuous variable by focusing on each
constituent’s contribution, using a large dataset.

Compound words with a megastudy
approach

Most previous studies examining the role of semantic trans-
parency have employed a factorial design in which multiple
variables, each with discrete possible levels, are crossed with
one another so there are observations at every combination of
levels across the different variables. However, a large number
of variables have been shown to influence word recognition,
and it is challenging to choose and manipulate a subset of
variables while holding many other correlated variables con-
stant. Many psycholinguistic variables are continuous in na-
ture, so converting the continuous variables (e.g., word fre-
quency) into categorical variables (high vs. low frequency)
may magnify or diminish the influence of the variables (e.g.,
Balota, Yap, Hutchison, & Cortese, 2012). In contrast, the
megastudy approach collects data for as many stimuli as pos-
sible without any constraints, allowing researchers to explore
the interrelationships among the variables of interest and eval-
uate the generalizability of theoretical models. Indeed, several
megastudies have advanced our understanding regarding the
role of word length in visual word recognition (e.g., New,
Ferrand, Pallier, & Brysbaert, 2006; Yap & Balota, 2009).
The megastudy approach, which has rarely been employed
to study morphologically complex words, can help provide
complementary evidence and insights into the properties that
influence the visual word recognition of complex words.
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Juhasz, Lai, andWoodcock (2015) developed a database of
629 compound words with ratings on compound familiarity,
age of acquisition, semantic transparency, lexeme meaning
dominance (LMD; the degree to which the meaning of a com-
pound word is contained in its first and second constituents),
imageability (the degree to which a word evokes a mental
image), and sensory experience (the degree to which a word
evokes a sensory and/or perceptual experience in the reader’s
mind). They found that certain types of semantic variables,
such as semantic transparency or LMD, had no or minimal
effect on the visual recognition of compoundwords. Although
this was one of the first reported megastudies on compound
word processing, it had one limitation that the present study
aimed to address: Namely, Juhasz et al. (2015) measured se-
mantic transparency scores only at a whole-word, not at a
constituent, level, where a 1-to-7 scale was used to judge
how strongly the lexemes were related to the meaning of the
compound word (i.e., higher numbers indicated greater
transparency).

It is apparent that the two constituents in a compound can
contribute to the meaning of the compound in a balanced (e.g.,
doorbell) or an unbalanced (strawberry) manner. Indeed,
Libben et al. (2003) categorized compound words into four
types: (1) both constituents are transparent, as in bedroom; (2)
only the first constituent is transparent, as in jailbird; (3) only
the second constituent is transparent, as in strawberry; and (4)
neither constituent is transparent, as in hogwash. Thus, even if
the semantic transparency ratings of jailbird and strawberry
are similar, they do not specify which constituent contributes
to the degree of semantic transparency. Previous studies have
provided support for position effects (e.g., Jarema et al., 1999;
Libben et al., 2003), so a whole-word-based transparency
norm imposes limitations on the study of semantic transpar-
ency effects in the visual word recognition of compound
words. Therefore, collecting constituent-based semantic trans-
parency ratings would allow one to explore a wider range of
questions, such as how individual constituents play a role in
compound word recognition.

A recent eye-tracking study using 445 noun–noun com-
pounds within a sentence context (Schmidtke, Van Dyke, &
Kuperman, 2018) demonstrated significant interactions be-
tween semantic transparency and individual reading experi-
ence (i.e., exposure to printed material and vocabulary sizes)
on compound processing, in which less experienced readers
processed transparent compound words more slowly than
opaque compounds, but more experienced readers processed
transparent words more rapidly than opaque compounds. The
results of this study suggest that how semantic transparency is
estimated—the authors used human-judged similarity ratings
between each component and the whole compound (i.e., either
head–compound or modifier–compound)—might be partly
responsible for the inconsistent findings regarding the role of
semantic transparency in earlier work.

In addition, we also attempted to control for more vari-
ables, in order to identify the unique influence of semantic
transparency. Specifically, beyond the lexical variables com-
monly controlled, two new ones were taken into account:
phonological onset, to which naming performance is particu-
larly sensitive (Yap & Balota, 2009), and morphological fam-
ily size (i.e., the number of morphologically related words that
share a given stem) for each constituent, which has been found
to be critical for morphological processing (Juhasz &
Berkowitz, 2011; Kuperman, Bertram, & Baayen, 2008;
Pylkkänen, Feintuch, Hopkins, & Marantz, 2004).

Corpus-based semantic transparency

In addition to human judgments of semantic transparency, one
could consider corpus-based calculations for estimating the
semantic transparency of compound words (e.g., Wang, Hsu,
Tien, & Pomplun, 2014). Latent semantic analysis (LSA:
http://lsa.colorado.edu; Landauer & Dumais, 1997) has been
used to calculate the semantic similarity between two words
(or phrases), through the analysis of a large text corpus. The
technique used by LSA is based on generating vectors in
semantic space that represent the co-occurrence of words in
passages of text, so-called count models (Mandera, Keuleers,
& Brysbaert, 2017). One can compute the semantic similarity
values for any two terms using the LSA cosine value, which
ranges from – 1 to 1. Therefore, this calculation allows re-
searchers to estimate the semantic transparency of two mor-
phemes in complex words, such as derived words
(Diependaele, Duñabeitia, Morris, & Keuleers, 2011;
Feldman, O’Connor, & Moscoso del Prado Martin, 2009;
Rastle, Davis, Marslen-Wilson, & Tyler, 2000) or compound
words (El-Bialy, Gagné, & Spalding, 2013).

However, some limitations are associated with this ap-
proach. For instance, count models (e.g., LSA) heavily
focus on mathematical functions to estimate semantic sim-
ilarity, which may not reflect the human cognitive system
(Mandera et al., 2017). Critically, count models have been
less than successful in terms of predicting human perfor-
mance in speeded pronunciation and lexical decision.
Recently, Mandera et al. addressed this issue by compar-
ing the performance of count models with that of predic-
tion-based models (or skip-gram model), which are based
on neural networks (Mikolov, Chen, Corrado, & Dean,
2013), to predict a target word from the neighboring
words (i.e., context words) that tend to co-occur with it
(e.g., the continuous bag-of-words model; CBOW) or to
predict the context words from a target word (e.g., the
skip-gram model). In short, the target word, Wordi, in
the CBOW can be predicted from the preceding words,
such as Wordi–2, Wordi–1, and the words following it, such
as Wordi+1 Wordi+2. When Mandera et al. compared the
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performance of the prediction-based models (CBOW and
skip-gram) with the count model using a large dataset of
semantic priming (Hutchison et al., 2013) and other be-
havioral tests, they found that the prediction-based models
(e.g., CBOW) explained the most variance in behavioral
data (e.g., RTs). In light of this, we utilized Mandera
et al.’s semantic vectors, based on distributional seman-
tics, for our compound words (available at http://crr.ugent.
be/snaut/).

The present study

The purposes of the present study were twofold. First,
we wished to provide a database of semantic transpar-
ency ratings for 2,861 bilexemic English compound
words at the constituent level. The ratings were then
analyzed using an existing behavioral database of com-
pound word performance on two visual word recogni-
tion tasks, lexical decision and speeded pronunciation,
using data obtained from the English Lexicon Project
(ELP; Balota et al., 2007).1 Second, the results of our
analysis were compared to those using existing studies,
based on either human-judged semantic transparency at
the whole-word level (Juhasz et al., 2015) or distance
scores derived from the prediction-based distributional
semantics algorithm at the constituent level (Mandera
et al., 2017). This comparison allowed for an evaluation
of the relative efficacy of different semantic transparen-
cy measures (human rating scores vs. corpus-based cal-
culation) in accounting for the role of semantic trans-
parency in compound word recognition, based on per-
formance data from the ELP.

Method

Participants

A total of 254 participants from the National University of
Singapore, whose first and dominant language was English,
participated for course credit or were paid SGD 5 for a 30-min
session. The total length of the task varied between 30 and
45 min across participants.

Materials

We took 629 English compound words from Juhasz et al.
(2015) and added another 2,271 words from the ELP (Balota
et al., 2007). The final number of compound words analyzed
was 2,861, after excluding items that were incorrectly coded
as compound words (e.g., derived words such as familiarness
or antithyroid were coded as compound words) in the ELP.

Procedure

On each trial, participants were presented a compound
word and either its first or second constituent (e.g.,
doorbell–door or doorbell–bell) simultaneously on the
computer monitor and were asked to judge how strongly
the meanings of two words were related, using a 1-to-7
scale (1 = not related, 7 = highly related). Due to the
large number of compound words, ten sets of word
pairs (compound words and one of their constituents)
were created, and each participant was assigned to a
set of either 590 or 540 word pairs. No participant rated
semantic transparency for both constituents of any com-
pound word. In the final database, each compound–con-
stituent pair was rated by 28–32 different participants.
The judgment task was presented using E-Prime 1.2
(Schneider, Eschman, & Zuccolotto, 2002), and re-
sponses were made via the computer keyboard. The or-
der of presentation of the words within the set assigned
to each participant was randomized.

Results and discussion

Reliability

To ensure the reliability of the transparency ratings, split-half
reliabilities (e.g., Cunningham, Perry, & Stanovich, 2001;
McBride-Chang & Manis, 1996) were calculated separately
for both constituents’ semantic transparency scores and were
found to be fairly high: r = .783, p < .001, for the first con-
stituent, and r = .773, p < .001, for the second constituent
(DeDe, Ricca, Knilans, & Trubl, 2014; Nunnally, 1978). In
addition, we examined the correlation with the previous data-
base of 629 compound words (Juhasz et al., 2015). Because
the Juhasz et al. (2015) database reflects only whole-word-
based transparency, we calculated the composite transparency
scores for our data by averaging the transparency scores of
each constituent for these 629 compound words. The correla-
tion between the ratings from Juhasz et al.’s (2015) database
and our composite transparency scores was found to be fairly
high (r = .757, p < .001).

1 The ELP provides a behavioral dataset of lexical decision and speeded pro-
nunciation latencies for 40,481 words and nonwords (available at http://
elexicon.wustl.edu). Across six universities in the United States, lexical
decision data were collected from 816 participants, with each participant
performing approximately 3,400 trials, and speeded pronunciation data were
collected from 444 participants, with each participant performing
approximately 2,500 trials (see Balota et al., 2007, for more about the dataset).
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Item-level regression analyses for the effect
of semantic transparency

Following the ELP and other megastudies (Balota,
Cortese, Sergent-Marshall, Spieler, & Yap, 2004; Goh,
Yap, Lau, Ng, & Tan, 2016; Sze, Yap, & Rickard Liow,
2015), a hierarchical multiple regression analysis was
used. In this approach, the dependent variable (response
latency from the ELP, in this case) was first regressed
on control variables that are known to influence word
recognition. These first steps were done to account for
variance in the latencies that can be explained by the
control variables. In the final steps, the variables of
interest—semantic transparency scores, in this case—
were added to the regression, to determine the amount
of additional variance in the latencies that could be
explained, over and above the variance already
accounted for in the earlier steps. This would allow
for a determination of the extent to which the variables
of interest could account for unique variance relative to
that already accounted for by the control variables. The
values of the criterion and semantic transparency vari-
ables in this approach were estimated at the item lev-
el—that is, averaged across responses from individual
participants.

Control variables

To identify the unique role of constituent-based semantic
transparency in compound processing, we controlled ten var-
iables at the surface and lexical levels. To capture the variance
associated with voice key biases, phonological onsets as di-
chotomous variables were used to code the initial phoneme of
each word (1 for presence of feature, 0 for absence of feature)
on 13 features (affricate, alveolar, nasal, etc.). These were
entered in the model first (see Spieler & Balota, 1997, for
details) as the surface level.

For the lexical level, we controlled word length var-
iables for both the compound and constituent words.
These included the numbers of syllables and letters in
the compound and the number of letters in each constit-
uent.2 The logarithm-transformed SUBTLEX values for
contextual diversity (i.e., lgSUBTLCD) for both the
compound and each constituent were used as indices
of word frequency.3 Finally, the morphological size for

each constituent—the count of the number of times each
constituent appeared, regardless of constituent position,
across the compound words in the present database—
were also entered into the models.

Table 1 shows descriptive statistics for the semantic
transparency scores, control variables, and dependent
measures. There are three sets of semantic transparency
scores: those from the present study, those from Juhasz
et al.’s (2015) database of 629 compound words, and
the semantic distance scores from Mandera et al.
(2017). Table 2 presents the intercorrelations between
the predictors and dependent measures.

Item-level regression analyses

Three-step hierarchical item-level regression analyses
were conducted for both lexical decision and speeded
pronunciation performance, with reaction time (RT)
and accuracy as dependent measures. Phonological on-
sets were entered in Step 1; word length, frequency, and
morphological family size were entered in Step 2; and
semantic transparency scores were entered in Step 3.

2 Despite the fact that the length variables at compound level and constituent
level were highly correlated, we did not find any multicollinearity issue among
them (all VIFs < 8).
3 This index substantially outperformed lgSUBTLWF (Brysbaert & New,
2009), consistent with some earlier studies (e.g., Adelman, Brown, &
Quesada, 2006).

Table 1 Means and standard deviations for the full set of predictors and
dependent variables

Mean Std. Deviation N

1. LDT-ZRT .045 .411 2,849

2. LDT-Acc .864 .176 2,849

3. Pronunciation-ZRT – .101 .376 2,849

4. Pronunciation-Acc .969 .061 2,849

5. ST-c1 (present study) 4.048 .786 2,861

6. ST-c2 (present study) 3.729 .796 2,861

7. ST-(from Juhasz et al., 2015) 4.532 1.203 629

8. Dist-c1 (from Mandera et al., 2017) .746 .132 2,609

9. Dist-c1 (from Mandera et al., 2017) .744 .133 2,616

10. Number of syllables 2.266 .487 2,850

11. Length (compound) 8.480 1.444 2,850

12. Length (c1) 4.250 1.073 2,861

13. Length (c2) 4.244 .947 2,860

14. Freq-LgSUBTLCD 1.276 .663 2,443

15. Freq-LgSUBTLCD1 3.171 .629 2,861

16. Freq-LgSUBTLCD2 3.188 .630 2,861

17. Morph size (c1) 14.633 20.498 2,861

18. Morph size (c2) 17.865 21.177 2,861

LDT: lexical decision task; ZRT: z-transformed reaction times; Acc: ac-
curacy; Pronunciation: speeded pronunciation task; ST: semantic trans-
parency score; c1: first constituent; c2: second constituent; Dist: semantic
distance score
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The present scores Table 3 presents the results of the re-
gression analyses for the effect of our collected semantic
transparency scores on the four dependent measures after
surface and lexical predictors were controlled. The control
variables accounted for significant variance across the de-
pendent measures—response latencies and accuracies—in
both speeded pronunciation and lexical decision perfor-
mance. Semantic transparency scores at the constituent
level accounted for significant additional unique variance
in the dependent measures, over and above the variance
already accounted for by the surface and lexical variables
(2.1% and 3.4%, respectively, for RTs and accuracy in
lexical decision; 1% and 1.3%, respectively, for RTs and
accuracy in speeded pronunciation). This provides clear-
cut evidence that constituent based semantic transparency
plays a role in compound processing.

Whole-word-based semantic transparency (using Juhasz
et al.’s, 2015, scores) Table 4 presents the results of the
same regression analyses using Juhasz et al.’s (2015)
whole-word-based semantic transparency scores. After
controlling both the surface and lexical variables,
Juhasz et al.’s (2015) semantic transparency accounted
for relatively less unique variance than did our ratings
across the dependent measures (0.2% and 2.1%, respec-
tively, for RTs and accuracy in lexical decision; 0.1%
and 0.4%, respectively, for RTs and accuracy in speeded
pronunciation), and only significantly accounted for ac-
curacy in lexical decision.

Corpus-based calculation data (using Mandera et al.’s, 2017,
cosine distances) Table 5 presents the results of the same
regression analyses using Mandera et al.’s (2017)
corpus-based computed pairwise cosine distances for se-
mantic transparency scores, based on the CBOW model
trained on 300 dimensions, six windows, UKWAC, and
the subtitle corpus. After controlling the surface and
lexical variables, Mandera et al.’s semantic distance

Table 4 Standardized RT and accuracy regression coefficients from
Steps 1 to 3 of the item-level regression analyses for speeded
pronunciation and lexical decision performance for compound words
(based on ratings from Juhasz et al., 2015)

Predictors Lexical Decision Speeded Pronunciation

RT Accuracy RT Accuracy

Step 1: Phonological onsets

R-square .065*** .032* .173*** .027

Step 2: Lexical variables

R-square .405*** .246*** .462*** .099***

ΔR2 = .339 ΔR2 = .214 ΔR2 = .214 ΔR2 = .072

Step 3: Semantic distance

Overall rating – .049 .150*** – .026 .066

R-square .408 .267*** .462 .103

ΔR2 = .002 ΔR2 = .021 ΔR2 = .001 ΔR2 = .004

c1: first constituent; c2: second constituent.
† p < .1, * p < .05; ** p < .01; *** p < .001

Table 3 Standardized RT and accuracy regression coefficients from
Steps 1 to 3 of the item-level regression analyses for speeded
pronunciation and lexical decision performance for compound words
(based on the present study’s ratings)

Predictors Lexical Decision Speeded Pronunciation

RT Accuracy RT Accuracy

Step 1: Phonological onsets

R-square .031*** .021*** .146*** .025***

Step 2: Lexical variables

R-square .395*** .243*** .436*** .104***

ΔR2 = .364 ΔR2 = .222 ΔR2 = .291 ΔR2 = .079

Step 3: Semantic transparency

c1 – .091*** .123*** – .043** .082***

c2 – .098*** .118*** – .085*** .064**

R-square .416*** .277*** .447*** .117***

ΔR2 = .021 ΔR2 = .034 ΔR2 = .010 ΔR2 = .013

c1: first constituent; c2: second constituent.
† p < .1, * p < .05; ** p < .0; *** p < .001

Table 5 Standardized RT and accuracy regression coefficients from
Steps 1 to 3 of the item-level regression analyses for speeded
pronunciation and lexical decision performance for compound words
(based on semantic distance from Mandera et al., 2017)

Predictors Lexical Decision Speeded Pronunciation

RT Accuracy RT Accuracy

Step 1: Phonological onsets

R-square .032*** .023*** .151*** .027***

Step 2: Lexical variables

R-square .393*** .244*** .435*** .103***

ΔR2 = .361 ΔR2 = .221 ΔR2 = .284 ΔR2 = .076

Step 3: Semantic distance

c1 .032† – .071*** .004 – .067**

c2 – .022 – .007 .006 – .001

R-square .394 .249** .435 .107**

ΔR2 = .001 ΔR2 = .005 ΔR2 = .000 ΔR2 = .004

c1: first constituent; c2: second constituent.
† p < .1, * p < .05; ** p < .01; *** p < .001
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scores accounted for relatively less unique variance than
did our data across the dependent measures (0.1% and
0.5%, respectively, for RTs and accuracy in lexical de-
cision; 0% and 0.4%, respectively, for RTs and accuracy
in speeded pronunciation), and only significantly
accounted for accuracy in both lexical decision and
speeded pronunciation. Note that significant regression
coefficients were found only for the first constituent
scores.

Present scores with the items that are common with Juhasz
et al. (2015, N = 621) Because the numbers of compound
words in our data and in Juhasz et al. (2015) were not
equivalent, we tested the effect of our data based only
on the items included in Juhasz et al.’s (2015) database.
Table 6 presents the regression analysis results. The se-
mantic scores in the present dataset were again better at
accounting for unique variance across the dependent
measures, except for accuracy in speeded pronunciation
(1.4% and 2.7%, respectively, for RTs and accuracy in
lexical decision; 0.8% for both RTs and accuracy in
speeded pronunciation).

Present scores with the items that are common with Mandera
et al.’s (2017, N = 2,337) As above, we also tested the
effect of our data based only on the items included in
Mandera et al.’s (2017) calculation. Table 7 presents the

regression analysis results. The semantic scores in the
present dataset were again better at accounting for
unique variance across the dependent measures (2.1%
and 3.3%, respectively, for RTs and accuracy in lexical
decision; 1.1% and 1.2%, respectively, for RTs and ac-
curacy in speeded pronunciation).

Conclusion

The present study provides human-judged semantic
transparency ratings for 2,861 English compounds at
their constituent level. The ratings we collected
accounted for performance in the ELP’s lexical decision
and speeded pronunciation data. Specifically, greater
transparency in either constituent was associated with
both faster latencies and greater accuracy in both the
lexical decision and naming tasks in the ELP. This can
be seen in the consistently negative regression coeffi-
cients for RTs and the positive coefficients for accuracy.
This pattern of results supports earlier findings showing
transparency effects for both constituents (e.g.,
Fiorentino & Fund-Reznicek, 2009; Shoolman &
Andrews, 2003).

More critically, our constituent-based human judg-
ment approach to measuring semantic transparency
turned out to possess more predictive power than the

Table 7 Standardized RT and accuracy regression coefficients from
Steps 1 to 3 of the item-level regression analyses for speeded
pronunciation and lexical decision performance for compound words
(current data using only items that are commonwithMandera et al., 2017)

Predictors Lexical Decision Speeded Pronunciation

RT Accuracy RT Accuracy

Step 1: Phonological onsets

R-square .032*** .023*** .151*** .027***

Step 2: Lexical variables

R-square .393*** .244*** .435*** .103***

ΔR2 = .361 ΔR2 = .221 ΔR2 = .284 ΔR2 = .076

Step 3: Semantic distance

c1 – .092*** .125*** – .047** .079***

c2 – .099*** .115*** – .085*** .063**

R-square .414** .278*** .446*** .115***

ΔR2 = .021 ΔR2 = .033 ΔR2 = .011 ΔR2 = .012

c1: first constituent; c2: second constituent.
† p < .1, * p < .05; ** p < .01; *** p < .001

Table 6 Standardized RT and accuracy regression coefficients from
Steps 1 to 3 of the item-level regression analyses for speeded
pronunciation and lexical decision performance for compound words
(current data using only items that are common with Juhasz et al., 2015)

Predictors Lexical Decision Speeded Pronunciation

RT Accuracy RT Accuracy

Step 1: Phonological onsets

R-square .065*** .032* .173*** .027

Step 2: Lexical variables

R-square .405*** .246*** .462*** .099***

ΔR2 = .340 ΔR2 = .214 ΔR2 = .289 ΔR2 = .072

Step 3: Semantic transparency

c1 – .067† .123** – .040 .071†

c2 – .089** .099* – .079* .051

R-square .419** .273** .470** .107†

ΔR2 = .014 ΔR2 = .027 ΔR2 = .008 ΔR2 = .008

c1: first constituent; c2: second constituent.
† p < .1, * p < .05; ** p < .01; *** p < .001
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other two approaches, of Juhasz et al. (2015) and
Mandera et al. (2017), as is summarized in Table 8.
The differences in the proportions of variance accounted
for across the dependent measures are likely due to the
way transparency was scored in each study. Namely,
Juhasz et al. (2015) used the whole-word approach,
which seems to be limited in capturing the individual
lexemes’ influence on lexical processing. In that sense,
our approach provides a methodological improvement
that extends their study. Our results are consistent with
Schmidtke et al. (2018), who also used human judg-
ments of semantic transparency at the constituent level
and showed that constituent-based transparency influ-
enced eye movement patterns, but their effects were
also moderated by individual differences in print
exposure.

Additionally, our ratings outperformed Mandera
et al.’s (2017) prediction-based semantic relatedness cal-
culations. The present findings suggest that distribution-
al semantic relatedness scores were less effective than
our human-judged ratings at accounting for human per-
formance in simple lexical decision and naming data, at
least for compound words. However, caution should be
taken in interpreting the regression analysis results be-
tween our human-judged data and corpus-based data. In
the latter, the quality of the word embeddings for the
compounds may be insufficient if there are many very-
low-frequency compounds. It is possible that the
resulting measures would perform better if the distribu-
tional model were trained on a larger corpus, so the low
performance of the corpus-derived measures may not be
due to inherent limitations of corpus-based calculations.4

We hope that other researchers will find this dataset
useful in order to manipulate and control for semantic
transparency at the constituent level. Empirical work

based on these norms can also be used to inform and
constrain future computational models of compound
word processing.

Author note This work was supported by a Faculty of
Arts & Social Sciences Staff Research Support Scheme
grant (C-581-000-222-091) to K.S.Y. and W.D.G. We
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