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Abstract 

The Chinese Lexicon Project (Tse et al., 2017) is a repository of lexical decision data for 

25,286 Cantonese Chinese two-character compound words. In order to create that repository, 

594 participants responded to approximately 1,404 words and 1,404 nonwords over three 

sessions. Using the data in this repository, the present study examines the variability and 

reliability of Chinese lexical decision performance, along with the moderating influence of 

individual differences on lexical processing. We generally found high to very high within- 

and between-session reliabilities for mean response times, ex-Gaussian parameters, accuracy 

rates, and a composite proficiency measure tapping lexical processing fluency. Using linear 

mixed effects models, we also found reliable interactions between fluency and two lexical 

effects. Specifically, more fluent readers showed larger effects of word frequency and 

semantic transparency. These results attest to the stability of Chinese word recognition 

performance, and are most consistent with a flexible lexical processing system that adapts 

optimally to task demands. 

(155 words) 
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The Chinese language stands as one of the few languages today that is logographic, 

with each character representing both a phonetic syllable and a unit of meaning (morpheme). 

In contrast to English and many other languages that rely on an alphabetic writing system, 

each Chinese character comprises strokes, which form radicals that in turn form characters 

and ultimately compound words. The smallest meaningful unit in written Chinese is a single 

free-standing morpheme (e.g., 媽 maa1 “mother”); the majority of these characters are 

comprised of a semantic and phonetic radical (e.g., for 媽, the semantic radical is 女 neoi5 

“female” while the phonetic radical is 馬 maa5 “horse”). Chinese is also a tonal language, 

relying on tonal contrasts to distinguish between words (e.g., 媽 maa1 and 麻 maa4 “sesame” 

share the same syllable but different tones).  

Chinese words are most commonly formed through the compounding of two 

characters (e.g., 花 faa1 “flower” and 園 jyun4 “park” → 花園 faa1 jyun4 “garden”). Indeed, 

two-character compound words represent 73.6% of all Chinese words (Institute of Language 

Teaching and Research, 1986). There exist a number of Chinese varieties or dialects; 

Mandarin Chinese is used in mainland China, Taiwan, and Singapore, while Cantonese 

Chinese is used in Hong Kong and Macau. While Mandarin and Cantonese broadly share the 

same vocabulary and characters, there are a couple of key differences. Specifically, the two 

varieties are not mutually intelligible, with different pronunciations for the same word. 

Cantonese Chinese also employs more tones (nine) compared to Mandarin Chinese (four). 

The present study focuses on the lexical processing of Cantonese Chinese.  

The visual word recognition of isolated Chinese characters and compound words has 

been found to be influenced by orthographic, phonological, and semantic properties (see Sze, 

Yap, & Rickard Liow, 2015; Tse & Yap, 2018, for reviews). In line with Sze et al. (2015) and 
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Tse and Yap (2018), orthographic properties1 include number of strokes, character 

frequency, and word frequency (i.e., frequency of the compound word). Phonological 

properties include homophone density (i.e., the number of other characters sharing the same 

pronunciation as the target character) and phonological consistency (i.e., whether a character 

has one or more than one pronunciation; e.g., 曾 is phonologically inconsistent because it is 

pronounced as cang4 in 曾經 cang4 ging1 “already” and as zang1 when it is a last name). 

Finally, semantic properties include semantic transparency, which reflects the extent to 

which a compound word is semantically related to its constituent characters. For example, 花

園 (faa1 jyun4 flower-park “garden”) is transparent whereas 花生 (faa1 saang1 flower-grow 

“peanut”) or 東西 (dung1 sai1 east-west “thing”) are opaque. Generally, Chinese characters 

and words are recognized faster when they have fewer strokes, are more frequent, are more 

semantically transparent, and are higher in phonological consistency and homophone density 

(Sze et al., 2015; Tse & Yap, 2018). 

To provide insights into the mechanisms underlying Chinese lexical processing, 

researchers have conducted factorial experiments that systematically examine the influence of 

various lexical variables (e.g., number of strokes) on lexical decision (classifying stimuli as 

words or nonwords) and speeded pronunciation (reading stimuli aloud) performance (e.g., 

Peng, Liu, & Wang, 1999; Taft, Liu, & Zhu, 1999; Zhou & Marslen-Wilson, 2000). While 

these factorial experiments have yielded a wealth of important findings that inform and 

constrain influential models (e.g., Peng et al., 1999; Taft et al., 1999; Tan & Perfetti, 1999; 

Zhou & Marslen-Wilson, 2000), they are also associated with several drawbacks. For 

 
1 There is as yet no universally agreed upon system for classifying Chinese word properties. For example, Sun, 
Hendrix, Ma, and Baayen (2018) define character and word frequency as frequency measures, and stroke count 
as a complexity measure, whereas Tsang et al. (2018) distinguish between word- and character-level variables. 
To further complicate matters, some researchers (e.g., Baayen, Feldman, & Schreuder, 2006) have proposed that 
word frequency be treated as a semantic variable. However, for ease of comparing the present study to earlier 
related work by Sze, Yap, and Rickard Liow (2015) and Tse and Yap (2018), we adopt their convention for 
classifying variables. 
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example, factorial experiments require continuous variables to be turned into categorical 

dimensions, which may reduce statistical power (Cohen, 1983) or increase Type I error 

(MacCallum, Zhang, Preacher, & Rucker, 2002). It is also increasingly challenging for 

researchers to select words for the different cells of a factorial design, while controlling for an 

ever growing list of correlated word properties (see Balota, Yap, Hutchison, & Cortese, 2012, 

for an extended discussion of these issues). In light of these challenges, the factorial approach 

has recently been complemented by megastudies (see Balota et al., 2012, for a review), 

wherein participants provide responses for very large sets of words (e.g., all commonly used 

two-character Chinese words). In that sense, instead of selecting stimuli based on a limited 

set of criteria, which may be vulnerable to list context effects or the experimenter’s implicit 

knowledge, megastudies allow the language to define the stimuli. 

Megastudy data allow the main and interactive effects of predictors to be explored in 

a continuous, rather than categorical, manner, while statistically controlling for the influence 

of correlated variables. For example, Sze et al. (2015) used item-level regression analyses to 

examine the predictive power of various variables on lexical decision performance for 1,560 

simplified Chinese characters, while Liu, Shu, and Li (2007) adopted a similar procedure to 

examine speeded pronunciation performance for 2,423 simplified Chinese characters. 

Turning to compound words, Tse and Yap (2018) conducted analyses on lexical decision data 

for 18,983 two-character traditional Chinese compound words. Both Sze et al. and Tse and 

Yap reported that orthographic variables accounted for the most variance in lexical decision, 

followed by semantic variables, then by phonological variables. Overall, these results suggest 

that skilled Chinese readers largely attend to orthographic and semantic information when 

processing visually presented characters and compound words, and that phonology plays a 

relatively marginal role in Chinese word recognition (cf. Perfetti & Dunlap, 2008).  
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Individual Differences in Chinese Word Recognition 

Word recognition studies, in Chinese and other languages, have predominantly 

focused on group-level performance, i.e., data are aggregated across participants (Yap, Balota, 

Sibley, & Ratcliff, 2012). Similarly, extant models of Chinese lexical processing have not yet 

considered individual differences amongst skilled readers. This emphasis on the 

characterization of an average or “prototypical” Chinese reader seems at odds with empirical 

evidence that there are substantial, stable individual differences in reading fluency, which are 

systematically related to word recognition performance (see Yap et al., 2012). For example, 

in English word recognition literature, more proficient readers (as reflected by their 

vocabulary knowledge or degree of print exposure) show decreased sensitivity to a number 

of word dimensions, including number of letters (Butler & Hains, 1979) and word frequency 

(Chateau & Jared, 2000). This is consistent with the idea that skilled readers, who possess 

higher quality orthographic and phonological representations (Perfetti & Hart, 2002), are 

relying to a greater extent on automatized lexical processing mechanisms (Stanovich, 1980).  

Indeed, it is conceivable that certain empirical discrepancies in the word recognition 

literature are at least partly driven by individual differences in participants between studies 

(for examples in English, see Yap, Balota, Tse, & Besner, 2008; Yap, Tse, & Balota, 2009). 

For instance, the facilitatory effect of phonological frequency has been reported in some 

studies (e.g., Ziegler, Tan, Perry, & Montant, 2000), but not in others (e.g., Chen, Vaid, & 

Wu, 2009). Similarly, some studies (e.g., Shen & Zhu, 1994) showed an interaction between 

character frequency and number of strokes in speeded pronunciation, wherein the effect of 

stroke count is stronger for low-frequency characters, while others have failed to replicate the 

pattern (e.g., Peng & Wang, 1997).  

The Present Study 

To our knowledge, there is currently no published work examining individual 
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differences in skilled Chinese lexical processing. The present study leverages the power of a 

megastudy, as conducted in the Chinese Lexicon Project (Tse et al., 2017), to address this 

important gap in the literature. Tse et al. reported a database of lexical variables and lexical 

decision trial-level data for more than 25,000 traditional Chinese two-character compound 

words, based on 594 native Cantonese-speaking participants from the Chinese University of 

Hong Kong, who were tested over three sessions. Importantly, for our purposes, each 

participant was asked to report their amount of time they read Chinese materials per week, 

cumulative grade point average, grade on Chinese language university entrance exam, and 

self-rated knowledge for traditional characters and spoken Cantonese (using 7-point rating 

scales).  

The goal of the present study is to extend the previous work by Tse and Yap (2018) in 

the following ways. As discussed earlier, Tse and Yap explored the predictive power of 

orthographic (number of strokes, character and word frequency), phonological (phonological 

consistency, homophone density), and semantic (semantic transparency) variables on Chinese 

lexical decision performance, while also examining theoretically important interactions 

between word-level and character-level properties. They reported that skilled readers seem to 

rely predominantly on orthographic and semantic information when processing visually 

presented Chinese words. They also observed that effects of cumulative character frequency 

(i.e., the summed frequencies of constituent characters) were weaker for compound words 

that were either semantically opaque or high in frequency. Consider the character frequency × 

word frequency interaction. Given that the constituent characters are encountered more often 

in high frequency words, compared to low frequency words, readers tend to process them 

holistically as a whole word unit (e.g., Caramazza, Laudanna, & Romani, 1988), thereby 

attenuating the influence of character-level variables (e.g., character frequency). Such 

findings shed light on the holistic versus analytic modes of processing in Chinese word 
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recognition.  

However, it is unclear to what extent these effects were moderated by individual 

differences such as self-rated language proficiency or academic ability. In our study, the 

individual differences measures reported by the participants were supplemented by lexical 

processing fluency2, a composite measure derived by first separately z-score transforming 

mean response times (RTs) and mean error rates, before averaging the two values (Chignell, 

Tong, Mizobuchi, Delange, Ho, & Walmsley, 2015). Specifically, we first computed the 

mean RT and error rate for each participant in the study. Next, for these two measures, the 

mean and standard deviation for the entire sample were obtained; these were used to generate 

two z-scores for each participant, one for RT and one for error rate. The two z-scores were 

then averaged and the composite score reversed in sign for ease of interpretation. In 

summary, faster, more accurate performance is reflected by more positive scores while 

slower, less accurate performance is reflected by more negative scores. This measure allows 

overall word recognition performance to be characterized even when speed-accuracy trade-

offs exist. The first objective of the present study is to examine how readers’ sensitivity to 

different word properties is systematically moderated by the foregoing individual differences. 

However, before we can properly address the question of individual differences, an 

important prerequisite is to determine whether individual differences in Chinese lexical 

processing are reliable, and the extent of variation in these differences. Reliability is highly 

crucial in psychological research; the reliability of RT measures limits their usefulness and 

constrains the extent to which they can correlate with other measures (Lowe & Rabbitt, 

1998). Without first establishing reliability, we are not able to distinguish genuine individual 

differences in processing from measurement noise. Despite the intuitive importance of 

exploring the long-range stability or alternate-form reliability of word recognition measures, 

 
2 We thank an anonymous reviewer for suggesting this metric. 
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there has been very little work addressing this question, even in English. Hence, in order to 

make inferences about individual differences in Chinese word recognition processing, one 

has to first estimate the stability of Chinese lexical decision performance - this is the second 

objective of the present study. Such stability is reflected by the consistency of performance 

across different time points (i.e., test-retest reliability) and across odd- and even-numbered 

trials (i.e., internal consistency).  

Individual performance can be quantified in terms of mean RTs and accuracy rates, or 

more granularly at the level of the underlying RT distribution. RT distributional 

characteristics have been captured by fitting empirical distributions to theoretical 

distributions such as the ex-Gaussian distribution (Ratcliff, 1979). This is in line with recent 

interest (e.g., Yap et al., 2012; Pexman & Yap, 2018) in examining the RT distributions of 

individual participants via estimating ex-Gaussian model parameters for each participant. The 

ex-Gaussian distribution (the convolution of an exponential and Gaussian distribution) has 

been found to provide a good fit for positively skewed empirical RT distributions; it contains 

three parameters, μ and σ, the mean and standard deviation of the Gaussian distribution 

respectively, and τ, the mean of the exponential distribution. Estimating ex-Gaussian 

parameters for each participant yields a more nuanced RT profile that characterizes the shape 

of the RT distribution produced by that participant.  

To recapitulate, the present study addresses two broad questions. First, how much 

stability is there in Chinese lexical decision performance over multiple time points, with 

respect to between-session test-retest reliability and within-session internal consistency? 

Performance is characterized across multiple dimensions, including mean RT, mean 

accuracy, and ex-Gaussian parameters. Second, assuming performance is shown to be 

reliable, what are the systematic relationships that exist between individual differences (self-

rated language proficiency, academic ability, and lexical processing fluency) and sensitivity 
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to various underlying dimensions of Chinese words? For example, consider the hypothesis 

that skilled readers rely more heavily on automatic lexical processing mechanisms (LaBerge 

& Samuels, 1974). This yields the prediction that more proficient readers will be influenced 

to a lesser extent by word properties. The Chinese Lexicon Project (Tse et al., 2017), with its 

exceptionally large and well-characterized set of words and participants, allows us to address 

the foregoing interrelated questions in a powerful, unified manner. 

Besides addressing questions related to Chinese psycholinguistics, our study serves to 

address a more general question that relates to the robustness and generalizability of research 

findings that are largely based on alphabetic writing systems. Although some form of Chinese 

is used by over a billion people (Li & Thompson, 2009), empirical work and modeling in 

lexical processing have been overwhelmingly dominated by the study of alphabetic writing 

systems (Perfetti & Liu, 2006). Relatedly, Share (2008) has highlighted the perils of having a 

field of reading science that devotes a disproportionate amount of research to English, an 

“outlier” alphabetic orthography that is characterized by extreme ambiguity with respect to 

spelling-sound correspondence. For example, the extensive interest in dual-route (Coltheart, 

Rastle, Perry, Langdon, & Ziegler, 2001) and connectionist (Plaut, McClelland, Seidenberg, 

& Patterson, 1996) models of reading was largely motivated by the unusual properties of 

English spelling-sound relations. Indeed, there is no guarantee that an optimal cognitive 

system for English and other alphabetic languages will be equally optimized for a 

logographic language like Chinese. In order for researchers to make more definitive 

language-general claims, it is important to study effects across multiple languages, so as to 

better tease apart language-general and language-specific processing. 

Method 

Dataset 

All analyses are based on archival trial-level data from the Chinese Lexicon Project 
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(Tse et al., 2017), a large-scale repository of psycholinguistic properties and lexical decision 

data for 25,286 two-character Chinese compound words, collected from 5943 native 

Cantonese-speaking students from the Chinese University of Hong Kong (CUHK). The full 

set of 25,286 words were randomly divided into 18 word sets (about 1,404 words each), with 

the constraint that the proportion of words with a specific first character was approximately 

the same across all subsets. For each word set, nonwords were created by recombining 

characters within the word set randomly, ensuring that the character-level lexical properties 

for words and nonwords were perfectly matched; this process yielded another 18 nonword 

sets that were derived from their respective word sets. Word sets were then paired with 

nonword sets that were created from some other set, e.g., nonwords created from Set 8 words 

were paired with Set 12 words. Next, 2,808 stimuli (1,404 words and 1,404 nonwords) 

obtained by aggregating a word and nonword set, were presented over three sessions to a 

participant, who went through approximately 936 lexical decision trials on each session.  

Additional demographic variables collected included the: a) amount of time they read 

Chinese materials a week, b) grade point average (GPA), c) Chinese language university 

entrance exam grade, d) self-rated knowledge for traditional characters, and e) self-rated 

knowledge for spoken Cantonese. To reduce these to a smaller number of orthogonal 

predictors, principal components analysis was carried out using varimax rotation with Kaiser 

normalization (Baayen et al., 2006). Two principal components with Eigenvalues greater than 

1 were extracted, accounting for 53% of the variance. As indicated in Table 1, the rotated 

component matrix indicated that self-rated knowledge for traditional characters and self-rated 

knowledge for spoken Cantonese loaded on the first principal component (PC1), while GPA, 

Chinese language university entrance score, and Chinese print exposure loaded on the second 

principal component (PC2). As such, whereas PC1 appears to capture participants’ self-rated 

 
3 Five participants who missed at least one of the three sessions were excluded from the analysis. 
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knowledge in written and spoken forms of Chinese, PC2 appears to capture participants’ 

general academic ability. These principal components, which we respectively term self-rated 

language proficiency and academic ability, were used in subsequent analyses of individual 

differences. As mentioned previously, to complement language proficiency and academic 

ability, we computed an additional measure of individual difference, lexical processing 

fluency, derived by averaging z-score transformed participant-level mean RTs and error rates 

(Chignell et al., 2015).  

Results 

First, error trials (11%) and trials with response latencies slower than 3000 ms or 

faster than 200 ms (0.8%) were excluded. Among the remaining correct trials, RTs that were 

more than 2.5 standard deviations away from each participants’ mean (2.7%) were identified 

as outliers. For ease of exposition, the reliability analyses will be first described, before we 

consider the relationships between individual differences and sensitivity to different lexical 

dimensions.  

Analysis 1: Reliability Analyses  

Reliability was examined in two ways. Each participant’s word data were first 

partitioned such that trials were organized into Day 1 (D1) trials, Day 2 (D2) trials, Day 3 

(D3) trials, odd-numbered trials (O), and even-numbered trials (E). Using split-half 

correlations, comparing D1, D2, and D3 trials allows us to assess between-session reliability, 

while comparing O and E trials allow us to assess within-session reliability. For each set of 

trials, the following parameters were computed separately for words and nonwords for each 

participant: a) mean RT, b) standard deviation, c) mean accuracy, d) d’, and e) ex-Gaussian 

parameters. d’, an alternative conceptualization of lexical decision accuracy (Diependaele, 

Brysbaert, & Neri, 2012), was calculated by subtracting the z-score of the false alarm rate 

(i.e., proportion of incorrect “word” response to nonwords) from the z-score of the hit rate 



Individual differences in Chinese words                                                                            13 

  

(i.e., proportion of correct “word” response to words), whereas ex-Gaussian parameters were 

estimated in R (R Development Core Team, 2015) using Nelder and Mead’s (1965) simplex 

algorithm. The measures described above are presented on Table 2 as a function of trial type 

(D1, D2, D3, O, and E). As can be seen, there was evidence for a practice effect; mean RT, 

standard deviation, μ, σ, and τ decreased over the three sessions.  

Interestingly, the speed-up was accompanied by a decrease in accuracy, reflected by a 

monotonic decrease in accuracy and d’. Table 3 presents the Pearson correlations for these 

parameters. Within- and between-session reliabilities were reassuringly high for lexical 

decision performance for both words and nonwords. Within-session reliability was very high 

for the mean, standard deviation, ex-Gaussian parameters, accuracy, and d’ (all rs ≥ .90). 

Turning to between-session reliability, correlations were moderate to very high for the same 

parameters (rs from .44 to .83). Interestingly, the D2-D3 correlations, compared to the D1-D2 

and D1-D3 correlations, were always highest, suggesting that performance might be 

relatively noisy during the first session, and that some time is needed for performance to 

stabilize. Overall, these results suggest that Chinese readers are associated with an RT 

distributional signature that extends beyond simple mean performance, which is stable across 

multiple testing sessions with distinct, non-overlapping sets of words and nonwords. 

Analysis 2: Individual Differences Analyses 

Having established the reliability of our data, we next examined the relationships 

between individual differences (self-rated language proficiency, academic ability, lexical 

processing fluency) and different aspects of Chinese lexical decision performance, including 

mean RT, mean accuracy, and d’. Figure 1 presents the intercorrelations between these 

variables. Self-rated language proficiency and academic ability were unexpectedly poor 

predictors of lexical decision performance. Language proficiency weakly predicted mean RT 

(r = -.108, p = .014) but not mean accuracy or d’. Academic ability modestly predicted 
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accuracy (r = .162, p < .001) and d’ (r = .187, p < .001), but not mean RT. Interestingly, the 

moderate positive correlations between RT and accuracy (r = .309, p < .001) and between RT 

and d’ (r = .314, p < .001) point to a speed-accuracy trade-off, i.e., slower participants were 

more accurate.  

This trade-off implies that the efficiency of an individual’s lexical processing system 

should not be solely captured by RT or accuracy, but is more appropriately tapped by a 

composite measure like lexical processing fluency that integrates both measures. Such an 

observation is nicely consistent with the observation that lexical processing fluency, in 

contrast to mean RT, showed the expected positive relationships with d’ (r = .549, p < .001) 

and mean accuracy (r = .570, p < .001), and a negative relationship with mean RT (r = -.581, 

p < .001); participants associated with higher fluency scores were faster and more accurate in 

their responses. As mentioned earlier, self-rated language proficiency did not predict mean 

accuracy or d’; more troublingly, its positive correlation with lexical processing fluency was 

also only borderline significant (r = .086, p = .051).  

Analysis 3: Analyses of Joint Effects of Item and Participant Properties 

 Using linear mixed effects (LME) models, we next assessed the effects of participant 

and word properties on lexical decision performance. As stated in the Introduction, our 

original intent was to assess the moderating effect of participant characteristics such as self-

rated language proficiency, academic ability, and lexical processing fluency on word 

processing. However, the above analyses have already highlighted the limitations of the first 

two measures, which poorly predicted word recognition performance. In light of that, only 

the composite lexical processing fluency measure, which balances processing speed and 

accuracy, is used to quantify the efficiency of a participant’s word recognition system. It is 

also worth noting that the fluency variable is associated with high psychometric reliability 

(see correlations in Table 3), an important prerequisite for an individual difference measure. 
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The word properties comprised the full set of variables investigated in Tse and Yap (2018), 

including word frequency, character frequency, stroke count, phonological consistency, 

homophone density, and semantic transparency. For character-specific measures (e.g., 

character frequency), we averaged counts across both characters. Table 4 presents the 

intercorrelations between predictors. 

Using R (R Core Team, 2015), z-score transformed RTs (Faust, Balota, Spieler, & 

Ferraro, 1999) were fitted using the lme4 package (Bates, Maechler, Bolker, & Walker, 2015) 

and p-values were obtained for fixed effects using the lmerTest package (Kuznetsova, 

Brockhoff, & Christensen, 2016). Each participant’s raw latencies were standardized using a 

z-score transformation, following the same procedure as the one adopted by Balota et al. 

(2007). The rationale for standardizing raw RTs using a z-score transformation is to control 

for spurious effects due to slowing. Specifically, a participant’s overall processing speed is 

positively correlated with the magnitude of effects produced by that participant. To illustrate 

this point, Faust et al. (1999) described two hypothetical participants, wherein the average RT 

for the slower participant will be two times that of the faster participant minus 300 ms for any 

given experimental condition. Suppose the two participants went through an experiment 

where frequency was manipulated, and the faster participant took, on average, 400 ms and 

500 ms respectively to respond to high and low frequency words; the frequency effect is 

therefore 100 ms. However, because of the systematic linear relationship between the two 

individuals, the slower participant would take 500 ms (400 × 2 – 300) and 700 ms (500 × 2 – 

300) respectively for high and low frequency words, yielding a frequency effect of 200 ms. In 

other words, the slower participant may produce larger frequency effects not because he/she 

is actually more sensitive to word frequency, but because he/she takes longer to respond. The 

use of z-score transformed RTs to rule out processing speed as a confound is particularly 

pertinent when attempting to interpret Group × Treatment interactions when the groups are 
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not matched on overall latency (Faust et al., 1999; see also Salthouse, 1985). 

A hierarchical analytical approach was used; main effects of predictors were 

examined in Step 1, while the interactions between fluency and predictors were subsequently 

added in Step 2. In Step 1, the main effects of the orthographic, phonological, and semantic 

variables, as well as fluency, were entered as fixed effects; random intercepts and slopes for 

participants and random intercepts for items were also included in the model (see Table 5). In 

Step 2, we tested a second model that included the main effects and the interactions between 

fluency and the various word properties (see Table 5). A likelihood ratio test confirmed that 

the Step 2 model accounted for significantly more variance in lexical decision performance 

than the Step 1 model alone, χ2(6) = 137.28, p < .001. 

Consistent with Tse and Yap (2018), the Step 1 main effects analyses revealed that 

participants recognized two-character compound words faster when they were associated 

with fewer strokes, higher character frequencies, higher word frequencies, higher homophone 

density, higher phonological consistency, and higher semantic transparency. Participants who 

were associated with higher fluency scores also made faster responses. Figure 2 presents the 

distribution of random slopes or coefficients as a function of word property. As can be seen, 

there is a great deal of variation in the magnitude of effects associated with participants. For 

example, consider the random slopes for word frequency. Even though virtually all 

participants showed a negative slope (i.e., faster RTs for high frequency words), these slopes 

were normally distributed, with some participants showing a much smaller frequency effect 

than others. Turning to the Step 2 interaction effects, we examined the extent to which the 

effects of different word properties were moderated by participant fluency scores. Using the 

effects package (Fox et al., 2015), the two statistically significant interactions are plotted as 

simple slopes on Figure 3. Specifically, participants who could discriminate between words 

and nonwords more efficiently (as reflected by higher fluency scores) showed larger (not 
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smaller) effects of word frequency and semantic transparency. 

 As discussed earlier, the motivation for using z-score transformed RTs in place of raw 

RTs is to guard against spurious overadditive interactions between fluency and properties. 

Essentially, because less fluent participants are associated with slower, more variable RTs, 

the larger effects produced by these participants may therefore be mediated by slowing rather 

than by greater sensitivity to a particular word dimension (Faust et al., 1999). As can be seen 

in Figure 1, there is a strong negative correlation (r = -.58) between fluency and mean RT. To 

verify the effects of slowing in the present dataset, we conducted a supplementary analysis to 

examine the interactions between fluency and word properties when raw RTs were used as 

the dependent variable (see Table 6). Interestingly, this analysis revealed three reliable 

interactions; more fluent participants showed smaller effects of stroke count, character 

frequency, and word frequency (see Figure 4). However, the story becomes more 

complicated when one examines Table 7, which presents the descriptive statistics behind the 

simple slopes. As can be seen, faster raw RTs are associated with smaller effects, making it 

difficult to unequivocally disentangle the influence of slowing from the influence of genuine 

enhanced sensitivity. The present data further underscore the interpretative ambiguity of 

Group × Treatment interactions based on raw RTs when groups vary on processing speed. 

Discussion 

To our knowledge, the present study is the first large-scale investigation of individual 

differences in Cantonese Chinese lexical processing, using the well-characterized behavioral 

dataset from the Chinese Lexicon Project (Tse et al., 2017). There were a few noteworthy 

findings. First, across non-overlapping sets of stimuli, between- and with-session reliability 

were high to very high across a range of performance indicators. Second, measures based on 

self-reported language proficiency and academic ability were unexpectedly poor predictors of 

word recognition performance. Finally, the LME models not only yielded main effects that 
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were consistent with previous work by Tse and Yap (2018), but importantly revealed novel 

and theoretically interesting interactions between word properties and individual differences. 

Variability and Reliability of Word Recognition Performance 

Our data revealed unequivocal and substantial variability between participants in 

word recognition performance across virtually all dimensions of interest, including mean 

RTs, accuracy rates, RT distributional characteristics, lexical processing fluency, and 

sensitivity to lexical dimensions (see Figures 1 and 2). Characterizing the scale of these 

individual difference using a very large sample of participants serves as a useful benchmark 

for future individual differences work in Chinese. More crucially, our analyses revealed 

reassuringly high within- and between-session reliability for these measures. Evaluating the 

reliability of word recognition measures is an important first step in the study of individual 

differences in word recognition. Without first doing that, it is unclear if variability amongst 

readers reflects systematic individual differences or simply measurement noise.  

Interestingly, reliability was just as high for responses to both words and nonwords 

(Yap, Sibley, Balota, Ratcliff, & Rueckl, 2015). While not entirely unexpected, these findings 

collectively attest to the reliability of Chinese word recognition performance, which goes 

beyond simple average processing speed and which applies to both words and nonwords. 

More fundamentally, they demonstrate that stable RT distributional profiles in lexical 

processing are not idiosyncratic to English but also generalize to other languages with 

markedly different properties.  

Reconsidering Self-Rated Language Proficiency 

In the Chinese Lexicon Project (Tse et al., 2017), participants provided information 

on self-rated language proficiency (written and spoken) and academic ability (cumulative 

grade-point average and grades on the Chinese language university entrance exam). With the 

benefit of hindsight, these may not have been the optimal individual differences measures to 
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quantify reader proficiency. As reported in the Results, both measures were relatively poor 

predictors of word recognition performance.  

The low correlations between academic ability and word recognition measures can 

probably be explained by the fact that most courses in the university do not tap proficiency in 

the Chinese language that strongly. However, our a priori expectation was that self-rated 

language proficiency would tap the efficiency of the lexical processing system. For example, 

one might predict that higher proficiency participants would be associated with faster and 

more accurate lexical decision performance. However, to our surprise, there was essentially 

no correlation between self-rated language proficiency and lexical decision accuracy (see 

Figure 1). Although there was a weak negative correlation (r = -.108) between proficiency 

and mean RT (i.e., faster responses for more proficient participants), this relationship was 

qualified by the moderate positive correlation (r = .309, p < .001) between mean RT and 

mean accuracy, indicative of a speed-accuracy tradeoff.  

The low predictive power of self-rated proficiency is possibly driven by a range of 

factors, including range restriction. Specifically, a selective admission process prevents 

applicants with lower Chinese fluency from securing a place in the university, and this 

restriction of range is reflected in the data. For the 7-point self-rated knowledge for 

traditional characters, nearly 90% of the sample produced responses between 5 and 7. 

Likewise, for the 7-point self-rated knowledge for spoken Cantonese, over 95% of the sample 

produced responses between 5 and 7. In light of the limitations of the self-rated language 

fluency measure, Chinese proficiency in our study was operationally defined using a 

composite lexical processing fluency measure that combines z-score transformed mean RTs 

and accuracy rates (Chignell et al., 2015). Lexical processing fluency was associated with 

high within-session and between-session reliabilities (see Table 3), and also showed strong 

correlations (in the correct directions) with RT and accuracy.  
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Of course, one could ask if there is any independent evidence that fluency actually 

taps Chinese proficiency, given the very weak correlation (r = .086) between fluency and 

self-rated language proficiency. Fortunately, we have some indirect evidence that speaks to 

this question. Specifically, the English Lexicon Project (Balota et al., 2007) contains lexical 

decision data for approximately 800 participants, along with their Shipley (1940) vocabulary 

scores; vocabulary knowledge serves as a proxy for language proficiency. We computed 

fluency scores for these participants, and found a strong positive correlation of .542 between 

fluency and vocabulary scores, yielding converging evidence that lexical processing fluency 

can be validly used to tap the efficiency of an individual’s word recognition processes. 

Individual Differences in Chinese Lexical Processing 

After having established the reliability of word recognition measures, and equipped 

with a reliable and valid index of lexical processing fluency, we next examined how 

sensitivity to different word properties in Chinese lexical processing was moderated by 

fluency. Interestingly, more fluent participants produced larger effects of word frequency and 

semantic transparency. This pattern is inconsistent with the intuition that highly proficient 

Chinese readers are simply less sensitive to all word dimensions. Instead, our results point to 

a more complex situation where participants with higher quality representations are more 

sensitive to certain dimensions.  

Specifically, participants who are more fluent lexical processors can better capitalize 

on their word knowledge to emphasize the processing of lexical properties that are most task-

relevant. In the lexical decision task, the objective is to discriminate familiar/meaningful 

words from unfamiliar/meaningless nonwords (Balota & Chumbley, 1984). To effectively 

carry out this task, participants should attend to word properties that are diagnostic of a letter 

string’s familiarity or meaningfulness. In the present study, nonwords were generated through 

the random recombination of characters within the word set, ensuring that the character-level 
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properties (e.g., character frequency, stroke count, phonological consistency) for words and 

nonwords are perfectly matched. However, compound words are higher in word frequency 

than compound nonwords; nonwords, which do not occur in the language, by definition have 

a word frequency of 0. Similarly, semantic transparency reflects the degree of relatedness 

between a compound word and its constituent characters. Nonwords are necessarily more 

semantically opaque than words, since they, by definition, do not possess meaning and 

therefore can never be related to their constituent characters. It is worth noting that the 

moderating influence of individual differences was observed for the only two properties that 

are systematically different between words and nonwords.  

In sum, our data support the hypothesis that more proficient Chinese readers show 

enhanced sensitivity to task-relevant word dimensions (i.e., word frequency and semantic 

transparency) that allow them to discriminate more efficiently between words and nonwords. 

Yap et al. (2012) found a similar pattern in English wherein vocabulary knowledge was 

positively correlated with participant-level frequency effects in lexical decision, but not 

speeded pronunciation. In addition, a more recent study by Pexman and Yap (2018) reported 

that readers with more vocabulary knowledge were more sensitive to concreteness but less 

sensitive to word frequency in a semantic categorization task (is a word concrete or 

abstract?). Broadly speaking, these findings are consistent with an adaptive and flexible 

lexical processing framework in which attention can be strategically deployed towards word 

features that allow performance to be optimized on a given task (Balota, Paul, & Spieler, 

1999; Balota & Yap, 2006).  

That being said, we were also expecting more fluent readers to show smaller effects 

of task-irrelevant dimensions such as character frequency or number of strokes. This is 

predicted by the perspective that as readers become more skilled, they rely to a greater extent 

on automatized lexical processing mechanisms, and consequently show attenuated sensitivity 
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to lexical dimensions (Stanovich, 1980). One might also expect readers with high-quality 

representations to process compound words as a whole word unit, rather than as discrete 

characters (e.g., Caramazza et al., 1988, Augmented Addressed Morphology model). 

However, it is quite clear from our results (see Table 5) that the task-irrelevant word 

properties did not interact with fluency. The reasons for this pattern are not entirely clear, but 

it is possible that the lexical processing fluency measure may not be sensitive or nuanced 

enough to detect the effects of interest.  

Andrews (2012) has pointed out that even though different aspects of skilled reading 

can be tapped by reading comprehension, vocabulary knowledge, and spelling ability, 

spelling ability remains the optimal index of the quality of an individual’s lexical 

representations (Perfetti, 1992). While other reading tasks (e.g., reading comprehension) can 

be supported by partial lexical information and context, accurate performance on a spelling 

task depends on highly precise lexical representations (Andrews, 2012). Future individual 

differences studies in Chinese should collect a wider range of performance-based measures, 

in particular spelling ability, vocabulary knowledge, and reading comprehension; these are 

likely to provide deeper insights into the interplay between lexical processing and individual 

differences. Another intriguing possibility is that, unlike English (Yap et al., 2012), more 

fluent Chinese lexical processors do not show attenuated sensitivity to word properties (e.g., 

number of strokes). This surprising pattern of results should be followed up in future 

research. 

Conclusion, Limitations, and Future Directions 

The Chinese word recognition literature has been almost exclusively dominated by 

the study of group-level data. Using well-characterized trial-level lexical decision megastudy 

data for 594 Cantonese-speaking participants responding to almost 1.7 million trials, we 

established the reliability of word and nonword recognition, and lexical processing fluency 
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measures in Chinese. Our findings also reinforce the value of finer-grained insights afforded 

by analyses of individual differences. In particular, we found support for flexible lexical 

processing, whereby highly skilled lexical processors are better able at tuning their attentional 

systems to lexical dimensions that are most diagnostic of the required decision.  

Of course, there are some limitations associated with the present work. Due to range 

restriction and possibly its self-report nature, self-rated language proficiency did not seem to 

be a good predictor of lexical decision performance, and future investigations ought to 

supplement self-rated proficiency with alternative measures such as a combination of reading 

comprehension, vocabulary knowledge, and spelling ability. College students are selected for 

their vocabulary knowledge and language fluency; this restriction of range makes it more 

than likely that we are underestimating the strength of the relationship between fluency and 

word recognition performance.  

Finally, our analyses focused on the processing of two-character Cantonese Chinese 

words in the lexical decision task. Moving forward, future work should consider the interplay 

between individual differences and word recognition performance, across a wider range of 

word lengths, lexical properties (http://www.chineselexicaldatabase.com; Sun, Hendrix, Ma, 

& Baayen, 2018), writing systems (simplified vs. traditional characters), dialect (Mandarin 

vs. Cantonese), paradigms (speeded pronunciation vs. lexical decision), and individual 

differences. 

http://www.chineselexicaldatabase.com/
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Table 1. Rotated Component Matrix with Component Loadings. 

 
  Component 

 1 2 

Knowledge of Chinese Characters  .847 .085 

Knowledge of Spoken Cantonese  .828 .041 

Entrance Score for Chinese Language  .147 .721 

Cumulative Grade Point Average  -.250 .702 

Time spent reading Chinese Materials  .181 .359 
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Table 2. Means, Standard Deviations, Accuracy, Ex-Gaussian Parameters, and d’ as a 

Function of Trial Type. 

 
  Overall Day 1 Day 2 Day 3 Odd Even 

Mword 657 683 650 635 656 657 

SDword 165 174 154 150 164 165 

µword 500 514 502 492 500 500 

σword 48 48 45 45 48 48 

τword 157 169 148 143 156 157 

Accuracyword 0.88 0.90 0.88 0.87 0.88 0.88 

       

Mnonword 727 769 716 693 727 726 

SDnonword 189 200 175 167 190 189 

µnonword 548 577 550 535 548 548 

σnonword 56 59 52 50 56 55 

τnonword 179 192 166 158 179 178 

Accuracynonword 0.90 0.90 0.90 0.89 0.90 0.90 

       

d’ 2.56 2.63 2.59 2.55 2.57 2.56 
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Table 3. Correlations Between Day 1, Day 2, Day 3, Odd-, and Even-Numbered Trial 

Parameters. 

 

 
D1-D2 D2-D3 D1-D3 O-E 

Mword .790 .818 .722 .991 

SDword .754 .757 .670 .973 

µword .784 .788 .672 .975 

σword .517 .662 .522 .896 

τword .752 .775 .682 .966 

Accuracyword .761 .781 .683 .941 

     

Mnonword .805 .827 .714 .994 

SDnonword .761 .786 .677 .983 

µnonword .813 .795 .704 .981 

σnonword .542 .608 .439 .911 

τnonword .754 .792 .671 .978 

Accuracynonword .683 .805 .645 .969 

     

d’ .814 .814 .739 .967 

Fluency .794 .818 .735 .974 

All correlations are statistically significant, p < .001 
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Table 4. Intercorrelations Between Predictor Variables (N = 18,983). 

 

  RT zRT Stroke 
Count 

Character 
Frequency 

Word 
Frequency 

Homophone 
Density 

Semantic 
Transparency 

Phonological 
Consistency 

(C1) 

Phonological 
Consistency 

(C2) 

RT —                  

zRT .411 *** —                

Stroke Count .058 *** .119 *** —              

Character 
Frequency -.106 *** -.278 *** -.261 *** —            

Word Frequency -.236 *** -.557 *** -.093 *** .328 *** —          

Homophone 
Density -.005  -.007  -.002  -.080 *** -.017 * —        

Semantic 
Transparency .013  .022 ** .202 *** -.264 *** -.116 *** .004  —      

Phonological 
Consistency (C1) .008  .000  .057 *** -.080 *** -.020 ** .046 *** .074 *** —    

Phonological 
Consistency (C2) -.003  .007  .063 *** -.075 *** -.043 *** .046 *** .063 *** .019 * —  

  

* p < .05, ** p < .01, *** p < .001 
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Table 5. LME Model Estimates (based on zRT) for the Main and Joint Effects of Word 

Properties and Fluency for Chinese Compound Words. C1 = Character 1; C2 = Character 2. 

 
Effect Variance SD 
Random effects   
 Items   
 Intercept 0.0320 0.1788 
 Participants   
 Intercept 0.0003 0.0168 
 Stroke Count 0.0000 0.0053 
 Character Frequency 0.0052 0.0720 
 Word Frequency 0.0018 0.0420 
 Homophone Density 0.0000 0.0005 
 Semantic Transparency 0.0007 0.0256 
 
 Coefficient Standard error p value 
Fixed effects    
 Intercept -0.1597 0.0031 <.001 
 Stroke Count 0.0043 0.0005 <.001 
 Character Frequency -0.1066 0.0055 <.001 
 Word Frequency -0.1803 0.0027 <.001 
 Homophone Density -0.0006 0.0001 <.001 
 Semantic Transparency -0.0666 0.0045 <.001 
 Phonological Consistency (C1) -0.0128 0.0031 <.001 
 Phonological Consistency (C2) -0.0130 0.0031 <.001 
 Fluency -0.0114 0.0019 <.001 
    
 Coefficient Standard error p value 
Fixed effects    
 Stroke Count × Fluency -0.0009 0.0006 ns 
 Character Frequency × Fluency 0.0049 0.0069 ns 
 Word Frequency × Fluency -0.0378 0.0033 <.001 
 Homophone Density × Fluency 0.0000 0.0001 ns 
 Semantic Transparency × Fluency -0.0179 0.0042 <.001 
 Phon Consistency (C1) × Fluency -0.0014 0.0030 ns 
 Phon Consistency (C1) × Fluency -0.0036 0.0030 ns 
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Table 6. LME Model Estimates (based on raw RT) for the Main and Joint Effects of Word 

Properties and Fluency for Chinese Compound Words. C1 = Character 1; C2 = Character 2. 

 
Effect Variance SD 
Random effects   
 Items   
 Intercept 1652.00 40.64 
 Participants   
 Intercept 2617.00 51.16 
 Stroke Count 1.90 1.38 
 Character Frequency 213.00 14.59 
 Word Frequency 127.80 11.30 
 Homophone Density 0.02 0.15 
 Semantic Transparency 13.28 3.64 
 
 Coefficient Standard error p value 
Fixed effects    
 Intercept 645.93 2.24 <.001 
 Stroke Count 1.07 0.13 <.001 
 Character Frequency -22.64 1.23 <.001 
 Word Frequency -41.20 0.67 <.001 
 Homophone Density -0.14 0.03 <.001 
 Semantic Transparency -15.11 1.04 <.001 
 Phonological Consistency (C1) -2.93 0.74 <.001 
 Phonological Consistency (C2) -2.83 0.73 <.001 
 Fluency -70.36 3.75 <.001 
    
 Coefficient Standard error p value 
Fixed effects    
 Stroke Count × Fluency -0.42 0.16 .007 
 Character Frequency × Fluency 8.44 1.50 <.001 
 Word Frequency × Fluency 4.23 0.94 <.001 
 Homophone Density × Fluency 0.03 0.04 ns 
 Semantic Transparency × Fluency 0.13 1.12 ns 
 Phon Consistency (C1) × Fluency 0.83 0.76 ns 
 Phon Consistency (C1) × Fluency 1.00 0.76 ns 
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Table 7. Effects of Stroke Count, Character Frequency, and Word Frequency as a Function 

of Lexical Processing Fluency. Raw Response Times Reported in Milliseconds. 

 

 Fluency (Centered) 
Variables -1 -.5 0 .5 1 
Low Stroke Count 699 666 633 600 566 
High Stroke Count 728 691 653 616 579 

      
Stroke Count Effect 28 24 20 16 12 

      
Low Character Frequency 805 758 710 662 614 
High Character Frequency 701 667 634 600 567 

      
Character Frequency Effect 105 90 76 62 47 

      
Low Word Frequency 805 765 725 685 645 
High Word Frequency 621 590 560 529 499 

      
Word Frequency Effect 184 175 165 156 147 
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Figure Captions 

Figure 1. Frequency distributions for measures of individual differences and word 

recognition performance, and scatterplots reflecting relationships between these variables. 

Figure 2. Distributions of random slopes across participants as function of lexical property. 

Figure 3. Statistically significant interactions of lexical processing fluency with character and 

word properties (based on z-scored RTs). 

Figure 4. Statistically significant interactions of lexical processing fluency with character and 

word properties (based on raw RTs). 
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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